Difference between revisions of "Bounded linear map"

From Maths
Jump to: navigation, search
m (Moving round this with Bounded (linear map))
m (typo)
Line 3: Line 3:
 
Given two [[normed space|normed spaces]] {{M|(X,\Vert\cdot\Vert_X)}} and {{M|(Y,\Vert\cdot\Vert_Y)}} and a [[linear map]] {{M|L:X\rightarrow Y}}, we say that{{rAPIKM}}:
 
Given two [[normed space|normed spaces]] {{M|(X,\Vert\cdot\Vert_X)}} and {{M|(Y,\Vert\cdot\Vert_Y)}} and a [[linear map]] {{M|L:X\rightarrow Y}}, we say that{{rAPIKM}}:
 
* {{M|L}} is bounded if (and only if)
 
* {{M|L}} is bounded if (and only if)
** {{M|\exists A>0\ \forall x\in X\left[\Vert L(x)\Vert_Y\le A\Vert x\Vert_X\right]}}
+
** {{M|\exists A\ge 0\ \forall x\in X\left[\Vert L(x)\Vert_Y\le A\Vert x\Vert_X\right]}}
  
 
==See also==
 
==See also==

Revision as of 22:59, 26 February 2016

(Unknown grade)
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
needs fleshing out

Definition

Given two normed spaces [ilmath](X,\Vert\cdot\Vert_X)[/ilmath] and [ilmath](Y,\Vert\cdot\Vert_Y)[/ilmath] and a linear map [ilmath]L:X\rightarrow Y[/ilmath], we say that[1]:

  • [ilmath]L[/ilmath] is bounded if (and only if)
    • [ilmath]\exists A\ge 0\ \forall x\in X\left[\Vert L(x)\Vert_Y\le A\Vert x\Vert_X\right][/ilmath]

See also

References

  1. Analysis - Part 1: Elements - Krzysztof Maurin