Difference between revisions of "Pre-image sigma-algebra"
m (Added see-also) |
m (→Proof of claims: Linked to subpage in theorem box) |
||
Line 7: | Line 7: | ||
==Proof of claims== | ==Proof of claims== | ||
{{Begin Inline Theorem}} | {{Begin Inline Theorem}} | ||
− | '''Claim 1: ''' {{M|(X,\mathcal{A})}} is indeed a [[sigma-algebra|{{sigma|algebra}}]] | + | '''[[Pre-image sigma-algebra/Proof of claim: it is a sigma-algebra|Claim 1]]: ''' {{M|(X,\mathcal{A})}} is indeed a [[sigma-algebra|{{sigma|algebra}}]] |
{{Begin Inline Proof}} | {{Begin Inline Proof}} | ||
{{:Pre-image sigma-algebra/Proof of claim: it is a sigma-algebra}} | {{:Pre-image sigma-algebra/Proof of claim: it is a sigma-algebra}} | ||
{{End Proof}}{{End Theorem}} | {{End Proof}}{{End Theorem}} | ||
+ | |||
==See also== | ==See also== | ||
* [[Trace sigma-algebra|Trace {{sigma|algebra}}]] | * [[Trace sigma-algebra|Trace {{sigma|algebra}}]] |
Revision as of 14:04, 18 March 2016
Pre-image [ilmath]\sigma[/ilmath]-algebra | |
[math]\{f^{-1}(A')\ \vert\ A'\in\mathcal{A}'\}[/math] is a [ilmath]\sigma[/ilmath]-algebra on [ilmath]X[/ilmath] given a [ilmath]\sigma[/ilmath]-algebra [ilmath](X',\mathcal{A}')[/ilmath] and a map [ilmath]f:X\rightarrow X'[/ilmath]. |
Definition
Let [ilmath]\mathcal{A}'[/ilmath] be a [ilmath]\sigma[/ilmath]-algebra on [ilmath]X'[/ilmath] and let [ilmath]f:X\rightarrow X'[/ilmath] be a map. The pre-image [ilmath]\sigma[/ilmath]-algebra on [ilmath]X[/ilmath][1] is the [ilmath]\sigma[/ilmath]-algebra, [ilmath]\mathcal{A} [/ilmath] (on [ilmath]X[/ilmath]) given by:
- [math]\mathcal{A}:=\left\{f^{-1}(A')\ \vert\ A'\in\mathcal{A}'\right\}[/math]
We can write this (for brevity) alternatively as:
- [math]\mathcal{A}:=f^{-1}(\mathcal{A}')[/math] (using abuses of the implies-subset relation)
Claim: [ilmath](X,\mathcal{A})[/ilmath] is indeed a [ilmath]\sigma[/ilmath]-algebra
Proof of claims
Claim 1: [ilmath](X,\mathcal{A})[/ilmath] is indeed a [ilmath]\sigma[/ilmath]-algebra
The message provided is:
See also
References
|
OLD PAGE
Let [ilmath]f:X\rightarrow X'[/ilmath] and let [ilmath]\mathcal{A}'[/ilmath] be a [ilmath]\sigma[/ilmath]-algebra on [ilmath]X'[/ilmath], we can define a sigma algebra on [ilmath]X[/ilmath], called [ilmath]\mathcal{A} [/ilmath], by:
- [ilmath]\mathcal{A}:=f^{-1}(\mathcal{A}'):=\left\{f^{-1}(A')\vert\ A'\in\mathcal{A}'\right\}[/ilmath]
TODO: Measures Integrals and Martingales - page 16