Difference between revisions of "Normal topological space"
From Maths
m |
m |
||
Line 8: | Line 8: | ||
* [[Regular topological space]] | * [[Regular topological space]] | ||
* [[Urysohn's lemma]] | * [[Urysohn's lemma]] | ||
+ | * [[Tietze extension theorem]] | ||
==References== | ==References== | ||
<references/> | <references/> | ||
{{Topology navbox|plain}} | {{Topology navbox|plain}} | ||
{{Definition|Topology}} | {{Definition|Topology}} |
Latest revision as of 00:14, 4 May 2016
Definition
A topological space, [ilmath](X,\mathcal{ J })[/ilmath], is said to be normal if[1]:
- [ilmath]\forall E,F\in C(\mathcal{J})\ \exists U,V\in\mathcal{J}[E\cap F=\emptyset\implies(U\cap V=\emptyset\wedge E\subseteq U\wedge F\subseteq V)][/ilmath] - (here [ilmath]C(\mathcal{J})[/ilmath] denotes the collection of closed sets of the topology, [ilmath]\mathcal{J} [/ilmath])
Equivalent statements
TODO: Make that sentence easier to read
See also
References
|