Difference between revisions of "Notes:Basis for a topology/Attempt 2"

From Maths
Jump to: navigation, search
(Created page with "==Overview== Last time I tried to merge the definitions, which got very confusing! This time I shall treat them as separate things and go from there. ==Definitions== Here we w...")
 
m (Saving work)
Line 20: Line 20:
 
If we have a '''TBasis''' for a topological space then we may talk about its open sets differently:
 
If we have a '''TBasis''' for a topological space then we may talk about its open sets differently:
 
* {{M|1=\forall U\in\mathcal{P}(X)\big[U\in\mathcal{J}\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\big]}}
 
* {{M|1=\forall U\in\mathcal{P}(X)\big[U\in\mathcal{J}\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\big]}}
 +
==Facts==
 +
# {{M|\mathcal{B} }} is a '''GBasis''' of {{M|X}} inducing {{M|(X,\mathcal{J}')}} {{M|\implies}} {{M|\mathcal{B} }} is a '''TBasis''' for the {{M|(X,\mathcal{J}')}}
 +
# {{Top.|X|J}} is a [[topological space]] with a '''TBasis''' {{M|\mathcal{B} }} {{M|\implies}} {{M|\mathcal{B} }} is a '''GBasis''' and it generates {{Top.|X|J}}
 +
==Proof of facts==
 +
# {{M|\mathcal{B} }} is a '''GBasis''' of {{M|X}} inducing {{M|(X,\mathcal{J}')}} {{M|\implies}} {{M|\mathcal{B} }} is a '''TBasis''' for the {{M|(X,\mathcal{J}')}}
 +
#* Let {{M|\mathcal{B} }} be a '''GBasis''', suppose it generates the [[topological space]] {{M|(X,\mathcal{J}')}}, we will show it's also a '''TBasis''' of {{M|(X,\mathcal{J}')}}
 +
#*# {{M|\forall B\in\mathcal{B}[B\in\mathcal{J}']}} must be shown
 +
#*#* Let {{M|B\in\mathcal{B} }} be given.
 +
#*#** Recall {{M|U\in\mathcal{J}'\iff\forall x\in U\exists B'\in\mathcal{B}[x\in B'\wedge B'\subseteq U]}}
 +
#*#** Let {{M|x\in B}} be given.
 +
#*#*** Choose {{M|1=B':=B}}
 +
#*#**** {{M|x\in B'}} by definition, as {{M|1=x\in B'=B}} and
 +
#*#**** we have {{M|B\subseteq B}}, by the [[implies-subset relation]], {{iff}} {{M|\forall p\in B[p\in B]}} which is trivial.
 +
#*#** Thus {{M|B\in\mathcal{J}'}}
 +
#*#* Since {{M|B\in\mathcal{B} }} was arbitrary we have shown {{M|\forall B\in\mathcal{B}[B\in\mathcal{J}']}}
 +
#*# {{M|1=\forall U\in\mathcal{J}'\exists\{B_\alpha\}_{\alpha\in I}[\bigcup_{\alpha\in I}B_\alpha=U]}} must be shown
 +
#*#* Let {{M|U\in\mathcal{J}'}} be given.
 +
#*#** Then, as {{M|\mathcal{B} }} is a '''GBasis''', by definition of the open sets generated: {{M|\forall x\in X\exists B\in\mathcal{B}[x\in B\wedge B\subseteq U]}}
 +
#*#** Let {{M|p\in U}} be given
 +
#*#*** Define {{M|1=B_p}} to be the {{M|B}} that exists such that {{M|p\in B_p}} and {{M|B_p\subseteq U}}
 +
#*#** We now have an .... thing, like a sequence but arbitrary, {{M|(B_p)_{p\in U} }} or {{M|\{B_p\}_{p\in U} }} - I need to come down on a notation for this - such that:
 +
#*#*** {{M|\forall B_p\in(B_p)_{p\in U}[p\in B_p\wedge B_p\subseteq U]}}
 +
#*#** We must now show {{M|1=\bigcup_{p\in U}B_p=U}}, we can do this by showing {{M|\bigcup_{p\in U}B_p\subseteq U}} and {{M|\bigcup_{p\in U}B_p\supseteq U}}
 +
#*#**# {{M|\bigcup_{p\in U}B_p\subseteq U}}
 +
#*#**#* Using the [[union of subsets is a subset of the union]] we see:
 +
#*#**#** {{M|\bigcup_{p\in U}B_p\subseteq U]}}
 +
#*#**# {{M|U\subseteq\bigcup_{p\in U}B_p}}
 +
#*#**#* Using the [[implies-subset relation]] we see: {{M|U\subseteq\bigcup_{p\in U}B_p\iff\forall x\in U[x\in\bigcup_{p\in U}B_p]}}, we will show the RHS instead.
 +
#*#**#** Let {{M|x\in U}} be given
 +
#*#**#*** Recall, by definition of [[union]], {{M|x\in\bigcup_{p\in U}B_p\iff\exists q\in U[x\in B_q]}}
 +
#*#**#**** Choose {{M|1=q:=x}} then we have {{M|x\in B_x}} (as {{M|p\in B_p}} is one of the defining conditions of choosing each {{M|B_p}}!)
 +
#*#**#* Thus {{M|U\subseteq\bigcup_{p\in U}B_p}}
 +
#*#** We have shown {{M|1=\bigcup_{p\in U}B_p=U}}
 +
#*#* Since {{M|U\in\mathcal{J}'}} was arbitrary we have shown this for all {{M|U\in\mathcal{J}'}}
 +
#*# We have now shown {{M|\mathcal{B} }} is a '''TBasis''' but not of what topology! {{Warning|Not finished!}}
 +
#* This completes the proof.
 
==Notes==
 
==Notes==
 
<references group="Note"/>
 
<references group="Note"/>

Revision as of 09:19, 8 August 2016

Overview

Last time I tried to merge the definitions, which got very confusing! This time I shall treat them as separate things and go from there.

Definitions

Here we will use GBasis for a generated topology (by a basis) and TBasis for a basis of an existing topology.

GBasis

Let [ilmath]X[/ilmath] be a set and [ilmath]\mathcal{B}\subseteq\mathcal{P}(X)[/ilmath] be a collection of subsets of [ilmath]X[/ilmath]. Then we say:

  • [ilmath]\mathcal{B} [/ilmath] is a GBasis if it satisfies the following 2 conditions:
    1. [ilmath]\forall x\in X\exists B\in\mathcal{B}[x\in B][/ilmath] - every element of [ilmath]X[/ilmath] is contained in some GBasis set.
    2. [ilmath]\forall B_1,B_2\in\mathcal{B}\forall x\ B_1\cap B_2\exists B_3\in\mathcal{B}[B_1\cap B_2\ne\emptyset\implies(x\in B_3\subseteq B_1\cap B_2)][/ilmath][Note 1][Note 2]

Then [ilmath]\mathcal{B} [/ilmath] induces a topology on [ilmath]X[/ilmath].

Let [ilmath]\mathcal{J}_\text{Induced} [/ilmath] denote this topology, then:

  • [ilmath]\forall U\in\mathcal{P}(X)\big[U\in\mathcal{J}_\text{Induced}\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\big][/ilmath]

TBasis

Suppose [ilmath](X,\mathcal{ J })[/ilmath] is a topological space and [ilmath]\mathcal{B}\subseteq\mathcal{P}(X)[/ilmath] is some collection of subsets of [ilmath]X[/ilmath]. We say:

  • [ilmath]\mathcal{B} [/ilmath] is a TBasis if it satisfies both of the following:
    1. [ilmath]\forall B\in\mathcal{B}[B\in\mathcal{J}][/ilmath] - all the basis elements are themselves open.
    2. [ilmath]\forall U\in\mathcal{J}\exists\{B_\alpha\}_{\alpha\in I}[\bigcup_{\alpha\in I}B_\alpha=U][/ilmath]

If we have a TBasis for a topological space then we may talk about its open sets differently:

  • [ilmath]\forall U\in\mathcal{P}(X)\big[U\in\mathcal{J}\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\big][/ilmath]

Facts

  1. [ilmath]\mathcal{B} [/ilmath] is a GBasis of [ilmath]X[/ilmath] inducing [ilmath](X,\mathcal{J}')[/ilmath] [ilmath]\implies[/ilmath] [ilmath]\mathcal{B} [/ilmath] is a TBasis for the [ilmath](X,\mathcal{J}')[/ilmath]
  2. [ilmath](X,\mathcal{ J })[/ilmath] is a topological space with a TBasis [ilmath]\mathcal{B} [/ilmath] [ilmath]\implies[/ilmath] [ilmath]\mathcal{B} [/ilmath] is a GBasis and it generates [ilmath](X,\mathcal{ J })[/ilmath]

Proof of facts

  1. [ilmath]\mathcal{B} [/ilmath] is a GBasis of [ilmath]X[/ilmath] inducing [ilmath](X,\mathcal{J}')[/ilmath] [ilmath]\implies[/ilmath] [ilmath]\mathcal{B} [/ilmath] is a TBasis for the [ilmath](X,\mathcal{J}')[/ilmath]
    • Let [ilmath]\mathcal{B} [/ilmath] be a GBasis, suppose it generates the topological space [ilmath](X,\mathcal{J}')[/ilmath], we will show it's also a TBasis of [ilmath](X,\mathcal{J}')[/ilmath]
      1. [ilmath]\forall B\in\mathcal{B}[B\in\mathcal{J}'][/ilmath] must be shown
        • Let [ilmath]B\in\mathcal{B} [/ilmath] be given.
          • Recall [ilmath]U\in\mathcal{J}'\iff\forall x\in U\exists B'\in\mathcal{B}[x\in B'\wedge B'\subseteq U][/ilmath]
          • Let [ilmath]x\in B[/ilmath] be given.
            • Choose [ilmath]B':=B[/ilmath]
              • [ilmath]x\in B'[/ilmath] by definition, as [ilmath]x\in B'=B[/ilmath] and
              • we have [ilmath]B\subseteq B[/ilmath], by the implies-subset relation, if and only if [ilmath]\forall p\in B[p\in B][/ilmath] which is trivial.
          • Thus [ilmath]B\in\mathcal{J}'[/ilmath]
        • Since [ilmath]B\in\mathcal{B} [/ilmath] was arbitrary we have shown [ilmath]\forall B\in\mathcal{B}[B\in\mathcal{J}'][/ilmath]
      2. [ilmath]\forall U\in\mathcal{J}'\exists\{B_\alpha\}_{\alpha\in I}[\bigcup_{\alpha\in I}B_\alpha=U][/ilmath] must be shown
        • Let [ilmath]U\in\mathcal{J}'[/ilmath] be given.
          • Then, as [ilmath]\mathcal{B} [/ilmath] is a GBasis, by definition of the open sets generated: [ilmath]\forall x\in X\exists B\in\mathcal{B}[x\in B\wedge B\subseteq U][/ilmath]
          • Let [ilmath]p\in U[/ilmath] be given
            • Define [ilmath]B_p[/ilmath] to be the [ilmath]B[/ilmath] that exists such that [ilmath]p\in B_p[/ilmath] and [ilmath]B_p\subseteq U[/ilmath]
          • We now have an .... thing, like a sequence but arbitrary, [ilmath](B_p)_{p\in U} [/ilmath] or [ilmath]\{B_p\}_{p\in U} [/ilmath] - I need to come down on a notation for this - such that:
            • [ilmath]\forall B_p\in(B_p)_{p\in U}[p\in B_p\wedge B_p\subseteq U][/ilmath]
          • We must now show [ilmath]\bigcup_{p\in U}B_p=U[/ilmath], we can do this by showing [ilmath]\bigcup_{p\in U}B_p\subseteq U[/ilmath] and [ilmath]\bigcup_{p\in U}B_p\supseteq U[/ilmath]
            1. [ilmath]\bigcup_{p\in U}B_p\subseteq U[/ilmath]
            2. [ilmath]U\subseteq\bigcup_{p\in U}B_p[/ilmath]
              • Using the implies-subset relation we see: [ilmath]U\subseteq\bigcup_{p\in U}B_p\iff\forall x\in U[x\in\bigcup_{p\in U}B_p][/ilmath], we will show the RHS instead.
                • Let [ilmath]x\in U[/ilmath] be given
                  • Recall, by definition of union, [ilmath]x\in\bigcup_{p\in U}B_p\iff\exists q\in U[x\in B_q][/ilmath]
                    • Choose [ilmath]q:=x[/ilmath] then we have [ilmath]x\in B_x[/ilmath] (as [ilmath]p\in B_p[/ilmath] is one of the defining conditions of choosing each [ilmath]B_p[/ilmath]!)
              • Thus [ilmath]U\subseteq\bigcup_{p\in U}B_p[/ilmath]
          • We have shown [ilmath]\bigcup_{p\in U}B_p=U[/ilmath]
        • Since [ilmath]U\in\mathcal{J}'[/ilmath] was arbitrary we have shown this for all [ilmath]U\in\mathcal{J}'[/ilmath]
      3. We have now shown [ilmath]\mathcal{B} [/ilmath] is a TBasis but not of what topology! Warning:Not finished!
    • This completes the proof.

Notes

  1. Note that [ilmath]x\in B_3\subseteq B_1\cap B_2[/ilmath] is short for:
    • [ilmath]x\in B_3\wedge B_3\subseteq B_1\cap B_2[/ilmath]
  2. Note that if [ilmath]B_1\cap B_2[/ilmath] is empty (they do not intersect) then the logical implication is true regardless of the RHS of the [ilmath]\implies[/ilmath]} sign, so we do not care if we have [ilmath]x\in B_3\wedge B_3\subseteq B_1\cap B_2[/ilmath]! Pick any [ilmath]x\in X[/ilmath] and aany [ilmath]B_3\in\mathcal{B} [/ilmath]!