Difference between revisions of "Curve"

From Maths
Jump to: navigation, search
(Created page with "A curve can mean many things. It is reasonably standard to say however that a curve is any one dimensional "thing" ==Definitions== ===Level curve=== Given a <math>f:\mathbb{R...")
 
m
 
Line 1: Line 1:
 
A curve can mean many things. It is reasonably standard to say however that a curve is any one dimensional "thing"
 
A curve can mean many things. It is reasonably standard to say however that a curve is any one dimensional "thing"
  
==Definitions==
+
==Level curve==
===Level curve===
+
Given a <math>f:\mathbb{R}^n\rightarrow\mathbb{R}</math> and a {{M|c\in\mathbb{R} }} we define the level curve as follows<ref>
Given a <math>f:\mathbb{R}^n\rightarrow\mathbb{R}</math> and a {{M|c\in\mathbb{R} }} we define the level curve as follows:
+
Elementary Differential Geometry - Pressley - Springer SUMS series</ref>:
  
 
<math>\mathcal{C}=\{x\in\mathbb{R}^n|f(x)=c\}</math>
 
<math>\mathcal{C}=\{x\in\mathbb{R}^n|f(x)=c\}</math>
Line 9: Line 9:
 
A more useful notation is <math>\mathcal{C}_\alpha=\{x\in\mathbb{R}^n|f(x)=\alpha\}</math>
 
A more useful notation is <math>\mathcal{C}_\alpha=\{x\in\mathbb{R}^n|f(x)=\alpha\}</math>
  
===Parameterisation===
+
==Parametrisation==
A parameterisation of a curve in {{M|\mathbb{R}^n}} is a function:
+
'''Note:''' see [[Parametrisation]] for details
 +
 
 +
 
 +
A parametrisation of a curve in {{M|\mathbb{R}^n}} is a function<ref>
 +
Elementary Differential Geometry - Pressley - Springer SUMS series</ref>:
  
 
<math>\gamma:(a,b)\rightarrow\mathbb{R}^n</math> with <math>-\infty\le a< b\le +\infty</math>
 
<math>\gamma:(a,b)\rightarrow\mathbb{R}^n</math> with <math>-\infty\le a< b\le +\infty</math>
  
====Linking with Level curves====
+
===Linking with Level curves===
A parameterisation whos image is all (or a part of) a level curve is called a parameterisation (of part) of the level curve.
+
A parametrisation whos image is all (or a part of) a level curve is called a parameterisation (of part) of the level curve.
 +
 
 +
===Components===
 +
The component functions of {{M|\gamma}} are {{M|1=\gamma(t)=(\gamma_1(t),\gamma_2(t),\cdots,\gamma_n(t))}}
 +
 
 +
===Differentiation===
 +
The derivative {{M|1=\frac{d\gamma}{dt}=\dot{\gamma}(t)=(\frac{d\gamma_1}{dt},\frac{d\gamma_2}{dt},\cdots,\frac{d\gamma_n}{dt})}}
 +
 
 +
==See also==
 +
* [[Reparametrisation]]
 +
* [[Parametrisation]]
  
 +
==References==
 +
<references />
 
{{Definition|Differential Geometry|Geometry of Curves and Surfaces}}
 
{{Definition|Differential Geometry|Geometry of Curves and Surfaces}}

Latest revision as of 21:30, 28 March 2015

A curve can mean many things. It is reasonably standard to say however that a curve is any one dimensional "thing"

Level curve

Given a [math]f:\mathbb{R}^n\rightarrow\mathbb{R}[/math] and a [ilmath]c\in\mathbb{R} [/ilmath] we define the level curve as follows[1]:

[math]\mathcal{C}=\{x\in\mathbb{R}^n|f(x)=c\}[/math]

A more useful notation is [math]\mathcal{C}_\alpha=\{x\in\mathbb{R}^n|f(x)=\alpha\}[/math]

Parametrisation

Note: see Parametrisation for details


A parametrisation of a curve in [ilmath]\mathbb{R}^n[/ilmath] is a function[2]:

[math]\gamma:(a,b)\rightarrow\mathbb{R}^n[/math] with [math]-\infty\le a< b\le +\infty[/math]

Linking with Level curves

A parametrisation whos image is all (or a part of) a level curve is called a parameterisation (of part) of the level curve.

Components

The component functions of [ilmath]\gamma[/ilmath] are [ilmath]\gamma(t)=(\gamma_1(t),\gamma_2(t),\cdots,\gamma_n(t))[/ilmath]

Differentiation

The derivative [ilmath]\frac{d\gamma}{dt}=\dot{\gamma}(t)=(\frac{d\gamma_1}{dt},\frac{d\gamma_2}{dt},\cdots,\frac{d\gamma_n}{dt})[/ilmath]

See also

References

  1. Elementary Differential Geometry - Pressley - Springer SUMS series
  2. Elementary Differential Geometry - Pressley - Springer SUMS series