Difference between revisions of "Real projective space"
From Maths
(Created page with "{{Stub page|grade=A*|msg=Would be a great page to have * Demote to grade C once charts and definition 1 is in place ~~~~}} __TOC__ ==Definition== Let {{M|n\in\mathbb{N}_{\ge 1...") |
m (defs) |
||
Line 26: | Line 26: | ||
==Standard structure== | ==Standard structure== | ||
===As a [[Topological manifold|topological {{n|manifold}}]]=== | ===As a [[Topological manifold|topological {{n|manifold}}]]=== | ||
+ | {{Requires work|grade=A*|msg=Charts}} | ||
+ | ==References== | ||
+ | <references/> | ||
+ | {{Definition|Smooth Manifolds|Topological Manifolds|Manifolds}} |
Latest revision as of 09:08, 18 February 2017
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Contents
Definition
Let [ilmath]n\in\mathbb{N}_{\ge 1} [/ilmath] be given. There are 2 common definitions for [ilmath]\mathbb{RP}^n[/ilmath] that we encounter. We will use definition 1 unless otherwise noted throughout the unified mathematics project.
Definition 1
Definition 1 | |
[math]\frac{\mathbb{S}^n\subset\mathbb{R}^{n+1} }{\langle x\sim -x\rangle}[/math] |
Definition 2
Definition 2 | |
[math]\frac{\mathbb{R}^{n+1}-\{0\} }{\langle x\sim\lambda x\ \vert\ \lambda\in(\mathbb{R}-\{0\})\rangle} [/math] |
- [ilmath]\mathbb{RP}^n:\eq\{L\in\mathcal{P}(\mathbb{R}^{n+1})\ \vert\ (L,\mathbb{R})\text{ is an 1-} [/ilmath][ilmath]\text{dimensional} [/ilmath][ilmath]\text{ vector } [/ilmath][ilmath]\text{subspace} [/ilmath][ilmath]\text{ of }(\mathbb{R}^{n+1},\mathbb{R})\} [/ilmath]
Of course doesn't tell us what topology to consider [ilmath]\mathbb{RP}^n[/ilmath] with, for that, define the map:
- [ilmath]\pi:(\mathbb{R}^{n+1}-\{0\})\rightarrow\mathbb{RP}^n[/ilmath] given by: [ilmath]\pi:x\mapsto\langle x\rangle[/ilmath]
- We use this map to imbue [ilmath]\mathbb{RP}^n[/ilmath] with the quotient topology, so:
- [math]\mathbb{RP}^n\cong\frac{\mathbb{R}^{n+1}-\{0\} }{\pi} [/math] TODO: What does this actually mean though? In terms of quotient-ing by an equivalence relation!
- [math]\mathbb{RP}^n\cong\frac{\mathbb{R}^{n+1}-\{0\} }{\pi} [/math]
- We use this map to imbue [ilmath]\mathbb{RP}^n[/ilmath] with the quotient topology, so:
Named instances
- Real projective plane - [ilmath]\mathbb{RP}^2[/ilmath]
Standard structure
As a topological [ilmath]n[/ilmath]-manifold
Grade: A*
This page requires some work to be carried out
Some aspect of this page is incomplete and work is required to finish it
The message provided is:
The message provided is:
Charts