Difference between revisions of "Topology"

From Maths
Jump to: navigation, search
m
m
Line 1: Line 1:
 
Once you have understood [[Metric space|metric spaces]] you can read [[Motivation for topology|motivation for topology]] and see why [[Topological space|topological spaces]] "make sense" and extend metric spaces.
 
Once you have understood [[Metric space|metric spaces]] you can read [[Motivation for topology|motivation for topology]] and see why [[Topological space|topological spaces]] "make sense" and extend metric spaces.
 +
 +
==Phrases==
 +
Let {{M|(X,\mathcal{J})}} and {{M|(X,\mathcal{K})}} be two [[Topological space|topologies]] on {{M|X}}
 +
===Coaser, Smaller, Weaker===
 +
Given two topologies <math>\mathcal{J}</math>, <math>\mathcal{K}</math> on {{M|X}} we say:<br/>
 +
<math>\mathcal{J}</math> is '''coaser, smaller''' or '''weaker''' than <math>\mathcal{K}</math> if <math>\mathcal{J}\subset\mathcal{K}</math>
 +
 +
'''Smaller''' is a good way to remember this as there are 'less things' in the smaller topology.
 +
 +
===Finer, Larger, Stronger===
 +
Given two topologies <math>\mathcal{J}</math>, <math>\mathcal{K}</math> on {{M|X}} we say:<br/>
 +
<math>\mathcal{J}</math> is '''finer, larger''' or '''stronger''' than <math>\mathcal{K}</math> if <math>\mathcal{J}\supset\mathcal{K}</math>
 +
 +
'''Larger''' is a good way to remember this as there are 'more things' in the larger topology.
  
 
[[Category:Topology]]
 
[[Category:Topology]]

Revision as of 18:45, 27 February 2015

Once you have understood metric spaces you can read motivation for topology and see why topological spaces "make sense" and extend metric spaces.

Phrases

Let [ilmath](X,\mathcal{J})[/ilmath] and [ilmath](X,\mathcal{K})[/ilmath] be two topologies on [ilmath]X[/ilmath]

Coaser, Smaller, Weaker

Given two topologies [math]\mathcal{J}[/math], [math]\mathcal{K}[/math] on [ilmath]X[/ilmath] we say:
[math]\mathcal{J}[/math] is coaser, smaller or weaker than [math]\mathcal{K}[/math] if [math]\mathcal{J}\subset\mathcal{K}[/math]

Smaller is a good way to remember this as there are 'less things' in the smaller topology.

Finer, Larger, Stronger

Given two topologies [math]\mathcal{J}[/math], [math]\mathcal{K}[/math] on [ilmath]X[/ilmath] we say:
[math]\mathcal{J}[/math] is finer, larger or stronger than [math]\mathcal{K}[/math] if [math]\mathcal{J}\supset\mathcal{K}[/math]

Larger is a good way to remember this as there are 'more things' in the larger topology.