Difference between revisions of "Notes:Distribution of the sample median"
m (Adding expression for m=3) |
(Fixed typo added work for n=7) |
||
Line 3: | Line 3: | ||
==Findings== | ==Findings== | ||
I've found results for two sample sizes, {{M|n\eq 3}} and {{M|n\eq 5}}, they are respectively: | I've found results for two sample sizes, {{M|n\eq 3}} and {{M|n\eq 5}}, they are respectively: | ||
− | * {{M|F(r)^ | + | * {{M|F(r)^2\big[4-3F(r)\big]}} for {{M|n\eq 3}}, and |
* {{M|F(r)^3\big[10-15F(r)+6F(r)^2\big]}} for {{M|n\eq 5}} | * {{M|F(r)^3\big[10-15F(r)+6F(r)^2\big]}} for {{M|n\eq 5}} | ||
− | ** I've experimentally verified this one | + | ** I've experimentally verified this one |
+ | * {{M|F(r)^4\big(-20F(r)^3+70F(r)^2-84F(r)+35\big)}} for {{M|n\eq 7}} | ||
==Important results== | ==Important results== | ||
# {{M|\P{\text{Median}(X_1,\ldots,X_{2m+1})\le r}\eq\Pcond{X_1\le\cdots\le X_{m+1}\le r}{X_1\le\cdots\le X_{2m+1} } }} | # {{M|\P{\text{Median}(X_1,\ldots,X_{2m+1})\le r}\eq\Pcond{X_1\le\cdots\le X_{m+1}\le r}{X_1\le\cdots\le X_{2m+1} } }} | ||
Line 112: | Line 113: | ||
I am now looking at {{M|m\eq 3}}, which is 7 samples. To find this we evaluate: | I am now looking at {{M|m\eq 3}}, which is 7 samples. To find this we evaluate: | ||
* {{MM|\P{\text{Median}\le r}\eq\frac{7!}{3!}\lim_{t\rightarrow+\infty}\left(\int^t_{-\infty}f(x_7)\left(\int^{x_7}_{-\infty}f(x_6)\left(\int^{x_6}_{-\infty}f(x_5)\left(\int^{\Min{r,x_5} }_{-\infty}f(x_4)F(x_4)^3 \d x_4\right)\d x_5\right)\d x_6\right)\d x_7\right)}} | * {{MM|\P{\text{Median}\le r}\eq\frac{7!}{3!}\lim_{t\rightarrow+\infty}\left(\int^t_{-\infty}f(x_7)\left(\int^{x_7}_{-\infty}f(x_6)\left(\int^{x_6}_{-\infty}f(x_5)\left(\int^{\Min{r,x_5} }_{-\infty}f(x_4)F(x_4)^3 \d x_4\right)\d x_5\right)\d x_6\right)\d x_7\right)}} | ||
+ | Initial work: | ||
+ | # {{MM|I_1(x_6):\eq \int^{x_6}_{-\infty}f(x_5)\left(\int^{\Min{r,x_5} }_{-\infty}f(x_4)F(x_4)^3 \d x_4\right)\d x_5\eq\left\{\begin{array}{lr}\frac{1}{5}\frac{1}{4}F(x_6)^5 && \text{if }x_6\le r\\\frac{1}{5}\frac{1}{4}F(r)^4\big(5F(x_6)-4F(r)\big) &&\text{if }x_6\ge r\end{array}\right.}} - these agree if {{M|x_6\eq r}} | ||
+ | # {{MM|I_2(x_7):\eq \int^{x_7}_{-\infty}f(x_6)\left(\int^{x_6}_{-\infty}f(x_5)\left(\int^{\Min{r,x_5} }_{-\infty}f(x_4)F(x_4)^3 \d x_4\right)\d x_5\right)\d x_6\eq \int^{x_7}_{-\infty}f(x_6)I_1(x_6)\d x_6}} {{MM|\eq\frac{1}{6}\frac{1}{5}\frac{1}{4}\left\{\begin{array}{lr} F(x_7)^6 && \text{if }x_7\le r \\ F(r)^4\big(10F(r)^2-24F(r)F(x_7)+15F(x_7)^2\big) && \text{if }x_7\ge r\end{array}\right.}} - note both parts agree if {{M|r\eq x_7}} as {{M|10+15-24\eq 1}} | ||
+ | # {{M|I_3(t)\eq}} (everything in the limit) {{MM|\eq \int^t_{-\infty} f(x_7)I_2(x_7)\d x_7}} {{MM|\eq\frac{1}{7}\frac{1}{6}\frac{1}{5}\frac{1}{4}\left\{\begin{array}{lr}F(t)^7 && \text{if }t\le r \\ F(r)^4\big(-20 F(r)^3 + 70F(r)^2 F(t)-84F(r)F(t)^2+35F(t)^3\big) && \text{if }t\ge r\end{array}\right.}} - note these agree if {{M|t\eq r}} | ||
+ | #* Clearly as {{M|t\rightarrow+\infty}} we get {{MM|I_3(t)\rightarrow\frac{1}{7}\frac{1}{6}\frac{1}{5}\frac{1}{4} F(r)^4\big(-20F(r)^3+70F(r)^2-84F(r)+35\big)}} as {{M|F(t)\rightarrow 1}} | ||
+ | |||
+ | From the top of this section: | ||
+ | * {{MM|\P{\text{Median}\le r}\eq \frac{7!}{3!} I_3(+\infty)\eq F(r)^4\big(-20F(r)^3+70F(r)^2-84F(r)+35\big)}} | ||
+ | |||
+ | |||
+ | '''Conclusion:''' | ||
+ | * {{MM|\P{\text{Median}\le r}\eq F(r)^4\big(-20F(r)^3+70F(r)^2-84F(r)+35\big)}} |
Revision as of 11:59, 17 December 2017
Contents
Findings
I've found results for two sample sizes, [ilmath]n\eq 3[/ilmath] and [ilmath]n\eq 5[/ilmath], they are respectively:
- [ilmath]F(r)^2\big[4-3F(r)\big][/ilmath] for [ilmath]n\eq 3[/ilmath], and
- [ilmath]F(r)^3\big[10-15F(r)+6F(r)^2\big][/ilmath] for [ilmath]n\eq 5[/ilmath]
- I've experimentally verified this one
- [ilmath]F(r)^4\big(-20F(r)^3+70F(r)^2-84F(r)+35\big)[/ilmath] for [ilmath]n\eq 7[/ilmath]
Important results
- [ilmath]\P{\text{Median}(X_1,\ldots,X_{2m+1})\le r}\eq\Pcond{X_1\le\cdots\le X_{m+1}\le r}{X_1\le\cdots\le X_{2m+1} } [/ilmath]
- [math]\eq \frac{\P{X_1\le\cdots\le X_{m+1}\le\Min{r,X_{m+2} }\le X_{m+2}\le X_{m+3}\le\cdots\le X_{2m+1} } }{\frac{1}{(2m+1)!} } [/math]
- [math]\eq \big((2m+1)!\big)\P{X_1\le\cdots\le X_{m+1}\le\Min{r,X_{m+2} }\le X_{m+2}\le X_{m+3}\le\cdots\le X_{2m+1} } [/math]
- [math]\eq \lim_{t\rightarrow+\infty}\Bigg(\big((2m+1)!\big)\P{X_1\le\cdots\le X_{m+1}\le\Min{r,X_{m+2} }\le X_{m+2}\le X_{m+3}\le\cdots\le X_{2m+1}\le t }\Bigg) [/math]
- [math]\eq\frac{(2m+1)!}{m!}\lim_{t\rightarrow+\infty}\Bigg[\int^t_{-\infty}f(x_{2m+1})\left(\int^{x_{2m+1} }_{-\infty}f(x_{2m})\left(\cdots\int^{x_{m+3} }_{-\infty}f(x_{m+2})\left(\int^{\Min{r,x_{m+2} } }_{-\infty} f(x_{m+1})F(x_{m+1})^m\d x_{m+1}\right)\d x_{m+2}\cdots\right)\d x_{2m}\right)\d x_{2m+1}\Bigg] [/math]
Problem overview
Let [ilmath]X_1,\ldots,X_{2m+1} [/ilmath] be a sample from a population [ilmath]X[/ilmath], meaning that the [ilmath]X_i[/ilmath] are i.i.d random variables, for some [ilmath]m\in\mathbb{N}_{0} [/ilmath]. We wish to find:
- [math]\P{\text{Median}(X_1,\ldots,X_{2m+1})\le r} [/math] - the Template:Cdf of the median.
Initial work
Since the variables are independent then any ordering is as likely as any other (which I proved the long way, rather than just jumping to [math]\frac{1}{(2m+1)!} [/math] - silly me) however the result, found in Probability of i.i.d random variables being in an order and not greater than something will be useful.
I believe the [ilmath]\P{\text{Median}(X_1,\ldots,X_{2m+1})\le r}\eq\Pcond{X_1\le\cdots\le X_{m+1}\le r}{X_1\le\cdots\le X_{2m+1} } [/ilmath]. Let us make some definitions to make this shorter.
- [ilmath]\mathcal{O}:\eq X_1\le\cdots\le X_{2m+1} [/ilmath] - representing the order part
- [ilmath]\mathcal{M}:\eq X_1\le\cdots\le X_{m+1}\le r[/ilmath] - representing the median part
- [ilmath]\mathcal{Q}:\eq\P{\text{Median}(X_1,\ldots,X_{2m+1})\le r}\eq\Pcond{\mathcal{M} }{\mathcal{O} } [/ilmath] - representing the question
We should also have some sort of converse, related to [ilmath]r\le X_{m+2}\le\cdots X_{2m+1} [/ilmath] or something.
We also have:
- An expression for [ilmath]\P{X_1\le \cdots\le X_n\le r} [/ilmath] from Probability of i.i.d random variables being in an order and not greater than something
- It's [math]\eq\frac{1}{n!}F_X(r)^n[/math]
Analysis
Let us look at [ilmath]X\le r[/ilmath] and [ilmath]X\le Y[/ilmath] to see what we can say if both are true (the "and")
- Claim: [ilmath](X\le r\wedge X\le Y)\iff(X\le\Min{r,Y})[/ilmath]
- Proof:
- [ilmath]\implies[/ilmath]
- Suppose [ilmath]r\le Y[/ilmath], so [ilmath]\Min{r,Y}\eq r[/ilmath], obviously [ilmath]X\le r\ \implies\ X\le r\eq\Min{r,Y} [/ilmath], so the implication holds in this case
- Suppose [ilmath]Y\le r[/ilmath], so [ilmath]\Min{r,Y}\eq Y[/ilmath], obviously [ilmath]X\le Y\ \implies\ X\le Y\eq\Min{r,Y} [/ilmath], so the implication holds in this case too.
- [ilmath]\impliedby[/ilmath]
- We notice either [ilmath]\Min{r,Y}\eq r[/ilmath] if [ilmath]r\le Y[/ilmath], or [ilmath]\Min{r,Y}\eq Y[/ilmath] if [ilmath]Y\le r[/ilmath] (slightly modify the language for the equality, it doesn't matter though really)
- Thus if [ilmath]r\le Y[/ilmath] then [ilmath]X\le r[/ilmath] and as [ilmath]r\le Y[/ilmath] by assumption, we use the transitivity of [ilmath]\le[/ilmath] to see [ilmath]X\le r\le Y[/ilmath] thus [ilmath]X\le Y[/ilmath] too - as required
- Thus if [ilmath]Y\le r[/ilmath] then [ilmath]X\le Y[/ilmath] and as [ilmath]Y\le r[/ilmath] by assumption, we use the transitivity of [ilmath]\le[/ilmath] to see [ilmath]X\le Y\le r[/ilmath] and thus [ilmath]X\le r[/ilmath] too - as required.
- So in either case, we have [ilmath]X\le Y[/ilmath] and [ilmath]X\le r[/ilmath] - as required
- We notice either [ilmath]\Min{r,Y}\eq r[/ilmath] if [ilmath]r\le Y[/ilmath], or [ilmath]\Min{r,Y}\eq Y[/ilmath] if [ilmath]Y\le r[/ilmath] (slightly modify the language for the equality, it doesn't matter though really)
- [ilmath]\implies[/ilmath]
Problem statement
Thus we really want to find:
- [ilmath]\P{\text{Median}(X_1,\ldots,X_{2m+1})\le r}\eq\Pcond{X_1\le\cdots\le X_{m+1}\le r}{X_1\le\cdots\le X_{2m+1} } [/ilmath]
- [math]\eq\frac{\P{\M\ \text{and}\ \O} }{\P{\O} } [/math]
- [math]\eq \big((2m+1)!\big)\P{X_1\le\cdots\le X_{m+1}\le\Min{r,X_{m+2} }\le X_{m+2}\le X_{m+3}\cdots\le X_{2m+1} } [/math]
- Caveat:We now need: [math]\big(X\le r\wedge X\le Y\le Z\big)\implies\big(X\le\Min{r,Y}\le Y\le Z\big)[/math] to justify this format. Although that's arguably not that helpful for the integral.
Initial integral
- This isn't about the median specifically, this is just looking at the specific integral.
Suppose we have a sample of length 3, [ilmath]X,Y,Z[/ilmath] then we are looking at:
- [ilmath]\P{X\le\Min{r,Y}\le Y\le Z\le t} [/ilmath] (where [ilmath]t[/ilmath] will be used for a limit towards [ilmath]\infty[/ilmath] to get [ilmath]\P{X\le \Min{r,Y}\le Y\le Z} [/ilmath] in the end), or as an integral:
- [math]\int^t_{-\infty}f(z)\left(\int^z_{-\infty}f(y)\left(\int^{\Min{r,y} }_{-\infty} f(x)\d x\right)\d y\right)\d z[/math]
- if [ilmath]t>r[/ilmath] then the minimum will get involved (for some [ilmath]z[/ilmath]s anyway) and limit it to [ilmath]r[/ilmath], otherwise it'll always stay under [ilmath]r[/ilmath] - of course in practice (as we'll take [ilmath]t\rightarrow\infty[/ilmath]) this will certainly happen.
- [math]\int^t_{-\infty}f(z)\left(\int^z_{-\infty}f(y)\left(\int^{\Min{r,y} }_{-\infty} f(x)\d x\right)\d y\right)\d z[/math]
Progression: 1
We are evaluating: [math]\P{X_1\le\cdots\le X_{m+1}\le\Min{r,X_{m+2} }\le X_{m+2}\le X_{m+3}\cdots\le X_{2m+1}\le t } [/math] (our answer is [math]\big((2m+1)!\big)\times[/math] of this as [ilmath]t\rightarrow\infty[/ilmath] ), the full integral follows:
- [math]\int^t_{-\infty}f(x_{2m+1})\left(\int^{x_{2m+1} }_{-\infty}f(x_{2m})\left(\cdots\int^{x_{m+3} }_{-\infty}f(x_{m+2})\left(\int^{\Min{r,x_{m+2} } }_{-\infty} f(x_{m+1}){\left(\int^{x_{m+1} }_{-\infty}f(x_{m} )\left(\cdots\int^{x_2}_{-\infty}f(x_1)\d x_1\cdots\right)\d x_m\right)}\d x_{m+1}\right)\d x_{m+2}\cdots\right)\d x_{2m}\right)\d x_{2m+1} [/math]
We operate on the inner bit:
- [math]{\int^{x_{m+1} }_{-\infty}f(x_{m} )\left(\cdots\int^{x_2}_{-\infty}f(x_1)\d x_1\cdots\right)\d x_m}\eq \frac{1}{m!}F(x_{m+1})^m[/math]
We substitute this back in to yield:
- [math]\frac{1}{m!}\int^t_{-\infty}f(x_{2m+1})\left(\int^{x_{2m+1} }_{-\infty}f(x_{2m})\left(\cdots\int^{x_{m+3} }_{-\infty}f(x_{m+2})\left(\int^{\Min{r,x_{m+2} } }_{-\infty} f(x_{m+1})F(x_{m+1})^m\d x_{m+1}\right)\d x_{m+2}\cdots\right)\d x_{2m}\right)\d x_{2m+1} [/math]
Conclusion of progression 1
We see here that
Progression: 2
This'll involve induction and dealing with the [ilmath]\text{Min}()[/ilmath] will be "tricky", both for practice and induction we will consider the special cases [ilmath]m\eq 1[/ilmath] and [ilmath]m\eq 2[/ilmath] by evaluating:
- [ilmath]m\eq 1[/ilmath] yields [math]I_1:\eq\frac{1}{1!}\int^t_{-\infty} f(x_3)\left(\int^{\Min{r,x_3} }_{-\infty}f(x_2)F(x_2) \d x_2\right)\d x_3[/math], by case analysis:
- if [ilmath]t\le r[/ilmath] then [ilmath]x_3\le t\le r[/ilmath] or [ilmath]x_3\le r[/ilmath] over the entire domain of interest, so [ilmath]\Min{r,x_3}\eq x_3[/ilmath] over the entire domain, giving:
- [math]I_1\eq\frac{1}{1!}\int^t_{-\infty}f(x_3)\left(\int^{x_3}_{-\infty}f(x_2)F(x_2)\d x_2\right)\d x_3[/math]
- We now use the corollary below to see:
- [math]I_1\eq\frac{1}{2!}\int^t_{-\infty}f(x_3)F(x_3)^2\d x_3[/math]
- [math]\eq\frac{1}{3!}F(t)^3[/math]
- [math]I_1\eq\frac{1}{2!}\int^t_{-\infty}f(x_3)F(x_3)^2\d x_3[/math]
- We now use the corollary below to see:
- [math]I_1\eq\frac{1}{1!}\int^t_{-\infty}f(x_3)\left(\int^{x_3}_{-\infty}f(x_2)F(x_2)\d x_2\right)\d x_3[/math]
- if [ilmath]t\ge r[/ilmath] then we split [ilmath](-\infty,t][/ilmath] into [ilmath](-\infty,r)[/ilmath] and [ilmath][r,t][/ilmath], giving:
- [math]I_1\eq\frac{1}{1!}\left[\int^r_{-\infty} f(x_3)\left(\int^{\Min{r,x_3} }_{-\infty}f(x_2)F(x_2) \d x_2\right)\d x_3+\int_r^tf(x_3)\left(\int^{\Min{r,x_3} }_{-\infty}f(x_2)F(x_2) \d x_2\right)\d x_3\right][/math]
- [math]\eq\frac{1}{1!}\left[\int^r_{-\infty}f(x_3)\left(\int^{x_3}_{-\infty}f(x_2)F(x_2) \d x_2\right)\d x_3+\int_r^tf(x_3)\left(\int^r_{-\infty}f(x_2)F(x_2) \d x_2\right)\d x_3\right][/math]
- We now use the required corollary immediately below to yield:
- [math]I_1\eq\frac{1}{1!}\left[\int^r_{-\infty}f(x_3)\cdot\frac{1}{2}F(x_3)^2\d x_3+\int_r^tf(x_3)\cdot\frac{1}{2}F(r)^2\d x_3\right][/math]
- [math]\eq\frac{1}{2!}\left[\frac{1}{3}F(r)^3+F(r)^2\int^t_rf(x_3)\d x_3\right][/math], note that: [math]\int^t_rf(x)\d x\eq\int_{-\infty}^tf(x)\d x-\int_{-\infty}^rf(x)\d x[/math] [math]\eq F(t)-F(r)[/math]
- [math]\eq\frac{1}{2!}F(r)^2\left[\frac{1}{3}F(r)+\big(F(t)-F(r)\big)\right][/math], note that: [math]F(t)-F(r)\eq\frac{3F(t)-3F(r)}{3} [/math] which we'll use next
- [math]\eq\frac{1}{2!}F(r)^2\left[\frac{3F(t)-2F(r)}{3}\right][/math]
- [math]\eq\frac{1}{3!}F(r)^2\big(3F(t)-2F(r)\big)[/math]
- [math]I_1\eq\frac{1}{1!}\left[\int^r_{-\infty} f(x_3)\left(\int^{\Min{r,x_3} }_{-\infty}f(x_2)F(x_2) \d x_2\right)\d x_3+\int_r^tf(x_3)\left(\int^{\Min{r,x_3} }_{-\infty}f(x_2)F(x_2) \d x_2\right)\d x_3\right][/math]
- if [ilmath]t\le r[/ilmath] then [ilmath]x_3\le t\le r[/ilmath] or [ilmath]x_3\le r[/ilmath] over the entire domain of interest, so [ilmath]\Min{r,x_3}\eq x_3[/ilmath] over the entire domain, giving:
It is clear that as [ilmath]t\rightarrow\infty[/ilmath] that we end up with [math]I_1\eq\frac{1}{3!}F(r)^2\big(3-2F(r)\big)[/math]
Thus: [math]\P{X_1\le X_2\le\Min{r,X_3}\le X_3}\eq\frac{1}{3!}F(r)^2\big(3-2F(r)\big)[/math]
Finally:
- [math]\Pcond{X_1\le X_2\le r}{X_1\le X_2\le X_3}\eq F(r)^2\big(3-2F(r)\big)[/math]
Required corollary
Recall from Probability of i.i.d random variables being in an order and not greater than something that:
- [math]\frac{1}{k!}\int^r_{-\infty}f(x)F(x)^k\d x\eq \frac{1}{(k+1)!}F(r)^{k+1} [/math]
So:
- [math]\int^r_{-\infty}f(x)F(x)^k\d x\eq \frac{1}{k+1}F(r)^{k+1} [/math]
By applying this to above (with the [ilmath]x_2[/ilmath] integrals):
- [math]\int^r_{-\infty}f(x)F(x)^1\d x\eq \frac{1}{2}F(r)^2 [/math], we then substitute this for the cases [ilmath]r:\eq r[/ilmath] and [ilmath]r:\eq x_3[/ilmath]
We'll then apply it to the [ilmath]x_3[/ilmath] integrals.
Conclusion of progression 2
- [math]\Pcond{X_1\le X_2\le r}{X_1\le X_2\le X_3}\eq F(r)^2\big(3-2F(r)\big)[/math]
Progression: 3
I am now looking at [ilmath]m\eq 3[/ilmath], which is 7 samples. To find this we evaluate:
- [math]\P{\text{Median}\le r}\eq\frac{7!}{3!}\lim_{t\rightarrow+\infty}\left(\int^t_{-\infty}f(x_7)\left(\int^{x_7}_{-\infty}f(x_6)\left(\int^{x_6}_{-\infty}f(x_5)\left(\int^{\Min{r,x_5} }_{-\infty}f(x_4)F(x_4)^3 \d x_4\right)\d x_5\right)\d x_6\right)\d x_7\right)[/math]
Initial work:
- [math]I_1(x_6):\eq \int^{x_6}_{-\infty}f(x_5)\left(\int^{\Min{r,x_5} }_{-\infty}f(x_4)F(x_4)^3 \d x_4\right)\d x_5\eq\left\{\begin{array}{lr}\frac{1}{5}\frac{1}{4}F(x_6)^5 && \text{if }x_6\le r\\\frac{1}{5}\frac{1}{4}F(r)^4\big(5F(x_6)-4F(r)\big) &&\text{if }x_6\ge r\end{array}\right.[/math] - these agree if [ilmath]x_6\eq r[/ilmath]
- [math]I_2(x_7):\eq \int^{x_7}_{-\infty}f(x_6)\left(\int^{x_6}_{-\infty}f(x_5)\left(\int^{\Min{r,x_5} }_{-\infty}f(x_4)F(x_4)^3 \d x_4\right)\d x_5\right)\d x_6\eq \int^{x_7}_{-\infty}f(x_6)I_1(x_6)\d x_6[/math] [math]\eq\frac{1}{6}\frac{1}{5}\frac{1}{4}\left\{\begin{array}{lr} F(x_7)^6 && \text{if }x_7\le r \\ F(r)^4\big(10F(r)^2-24F(r)F(x_7)+15F(x_7)^2\big) && \text{if }x_7\ge r\end{array}\right.[/math] - note both parts agree if [ilmath]r\eq x_7[/ilmath] as [ilmath]10+15-24\eq 1[/ilmath]
- [ilmath]I_3(t)\eq[/ilmath] (everything in the limit) [math]\eq \int^t_{-\infty} f(x_7)I_2(x_7)\d x_7[/math] [math]\eq\frac{1}{7}\frac{1}{6}\frac{1}{5}\frac{1}{4}\left\{\begin{array}{lr}F(t)^7 && \text{if }t\le r \\ F(r)^4\big(-20 F(r)^3 + 70F(r)^2 F(t)-84F(r)F(t)^2+35F(t)^3\big) && \text{if }t\ge r\end{array}\right.[/math] - note these agree if [ilmath]t\eq r[/ilmath]
- Clearly as [ilmath]t\rightarrow+\infty[/ilmath] we get [math]I_3(t)\rightarrow\frac{1}{7}\frac{1}{6}\frac{1}{5}\frac{1}{4} F(r)^4\big(-20F(r)^3+70F(r)^2-84F(r)+35\big)[/math] as [ilmath]F(t)\rightarrow 1[/ilmath]
From the top of this section:
- [math]\P{\text{Median}\le r}\eq \frac{7!}{3!} I_3(+\infty)\eq F(r)^4\big(-20F(r)^3+70F(r)^2-84F(r)+35\big)[/math]
Conclusion:
- [math]\P{\text{Median}\le r}\eq F(r)^4\big(-20F(r)^3+70F(r)^2-84F(r)+35\big)[/math]