Difference between revisions of "Measure"
m (→Definition) |
m |
||
Line 1: | Line 1: | ||
− | {{Extra Maths}}Not to be confused with [[Pre-measure]] | + | {{Refactor notice}} |
+ | ==Definition== | ||
+ | {{Extra Maths}}A (positive)<ref group="Note">What else is there? ''Measures, Integrals and Martingales'' mentions this</ref> measure<ref name="MIAM">Measures, Integrals and Martingales - Rene L. Schilling</ref> on a [[Measurable space|measurable space]] {{M|(X,\mathcal{A})}} (where recall {{M|X}} is a set and {{M|\mathcal{A} }} is a [[Sigma-algebra|{{sigma|algebra}}]] on that set) is a mapping: | ||
+ | * {{MM|1=\mu:\mathcal{A}\rightarrow[0,\infty]}} | ||
+ | That satisfies: | ||
+ | # {{M|1=\mu(\emptyset)=0}} | ||
+ | # For any finite [[Sequence|sequence]] of [[Pairwise disjoint|pairwise disjoint]] sets {{M|1=(A_i)_{i=1}^n\subseteq\mathcal{A} }} we have {{M|1=\mu\left(\udot_{i=1}^nA_i\right)=\sum^n_{i=1}\mu(A_i)}} | ||
+ | # For any [[Countably infinite|countably infinite]] sequence of pairwise disjoint sets {{M|1=(A_n)_{n=1}^\infty\subseteq\mathcal{A} }} we have {{M|1=\mu\left(\udot_{n=1}^\infty A_n\right)=\sum_{n=1}^\infty\mu(A_n)}} | ||
+ | |||
+ | ==Terminology== | ||
+ | {{Todo|Find references}} | ||
+ | ===Of sets=== | ||
+ | {| class="wikitable" border="1" | ||
+ | ! Term | ||
+ | ! Definition | ||
+ | ! Comment | ||
+ | |- | ||
+ | ! Finite | ||
+ | | A set {{M|A\in\mathcal{A} }} is finite if {{M|\mu(A)<\infty}} - we say "{{M|A}} has finite measure" | ||
+ | | | ||
+ | |- | ||
+ | ! {{Sigma|finite}} | ||
+ | | A set {{M|A\in\mathcal{A} }} is {{sigma|finite}} if <math>\exists(A_n)_{n=1}^\infty:[A\subseteq\cup^\infty_{n=1}A_n\wedge(\forall A_n,\ \mu(A_n)<\infty)]</math> | ||
+ | | | ||
+ | |} | ||
+ | ===Of measures=== | ||
+ | {| class="wikitable" border="1" | ||
+ | |- | ||
+ | ! Term | ||
+ | ! Definition | ||
+ | ! Comment | ||
+ | |- | ||
+ | ! Complete measure | ||
+ | | {{M|\forall A\in\mathcal{A} }} we have <math>[\mu(A)=0\wedge B\subset A]\implies B\in \mathcal{A}</math> | ||
+ | | | ||
+ | |- | ||
+ | ! Finite measure | ||
+ | | {{M|\mu}} is a finite measure if every set {{M|\in\mathcal{A} }} is finite. | ||
+ | | | ||
+ | |- | ||
+ | ! {{Sigma|finite measure}} | ||
+ | | {{M|\mu}} is {{sigma|finite}} if every set {{M|\in\mathcal{A} }} is {{sigma|finite}} | ||
+ | | | ||
+ | |} | ||
+ | ==Contrast with pre-measure== | ||
+ | '''Note:''' the family <math>A_n</math> must be pairwise disjoint | ||
+ | {| class="wikitable" border="1" | ||
+ | |- | ||
+ | ! Property | ||
+ | ! Measure | ||
+ | ! Pre-measure | ||
+ | |- | ||
+ | | | ||
+ | | <math>\mu:\mathcal{A}\rightarrow[0,\infty]</math> | ||
+ | | <math>\mu_0:R\rightarrow[0,\infty]</math> | ||
+ | |- | ||
+ | | | ||
+ | | <math>\mu(\emptyset)=0</math> | ||
+ | | <math>\mu_0(\emptyset)=0</math> | ||
+ | |- | ||
+ | | Finitely additive | ||
+ | | <math>\mu\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu(A_i)</math> | ||
+ | | <math>\mu_0\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu_0(A_i)</math> | ||
+ | |- | ||
+ | | Countably additive | ||
+ | | <math>\mu\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu(A_n)</math> | ||
+ | | If <math>\bigudot^\infty_{n=1}A_n\in R</math> then <math>\mu_0\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu_0(A_n)</math> | ||
+ | |} | ||
+ | ==Properties== | ||
+ | Here {{M|(X,\mathcal{A},\mu)}} is a [[Measure space|measure space]], and {{M|A,B\in\mathcal{A} }} | ||
+ | {{:Pre-measure/Properties in common with measure}} | ||
+ | ==Related theorems== | ||
+ | * [[A function is a measure iff it measures the empty set as 0, disjoint sets add, and it is continuous from below (with equiv. conditions)]] | ||
+ | ==See also== | ||
+ | * [[Pre-measure]] | ||
+ | ==Notes== | ||
+ | <references group="Note"/> | ||
+ | ==References== | ||
+ | <references/> | ||
+ | {{Definition|Measure Theory}} | ||
+ | |||
+ | =Old page= | ||
+ | Not to be confused with [[Pre-measure]] | ||
Revision as of 01:55, 26 July 2015
Contents
Definition
[math]\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }[/math][math]\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}[/math][math]\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }[/math]A (positive)[Note 1] measure[1] on a measurable space [ilmath](X,\mathcal{A})[/ilmath] (where recall [ilmath]X[/ilmath] is a set and [ilmath]\mathcal{A} [/ilmath] is a [ilmath]\sigma[/ilmath]-algebra on that set) is a mapping:
- [math]\mu:\mathcal{A}\rightarrow[0,\infty][/math]
That satisfies:
- [ilmath]\mu(\emptyset)=0[/ilmath]
- For any finite sequence of pairwise disjoint sets [ilmath](A_i)_{i=1}^n\subseteq\mathcal{A}[/ilmath] we have [ilmath]\mu\left(\udot_{i=1}^nA_i\right)=\sum^n_{i=1}\mu(A_i)[/ilmath]
- For any countably infinite sequence of pairwise disjoint sets [ilmath](A_n)_{n=1}^\infty\subseteq\mathcal{A}[/ilmath] we have [ilmath]\mu\left(\udot_{n=1}^\infty A_n\right)=\sum_{n=1}^\infty\mu(A_n)[/ilmath]
Terminology
TODO: Find references
Of sets
Term | Definition | Comment |
---|---|---|
Finite | A set [ilmath]A\in\mathcal{A} [/ilmath] is finite if [ilmath]\mu(A)<\infty[/ilmath] - we say "[ilmath]A[/ilmath] has finite measure" | |
[ilmath]\sigma[/ilmath]-finite | A set [ilmath]A\in\mathcal{A} [/ilmath] is [ilmath]\sigma[/ilmath]-finite if [math]\exists(A_n)_{n=1}^\infty:[A\subseteq\cup^\infty_{n=1}A_n\wedge(\forall A_n,\ \mu(A_n)<\infty)][/math] |
Of measures
Term | Definition | Comment |
---|---|---|
Complete measure | [ilmath]\forall A\in\mathcal{A} [/ilmath] we have [math][\mu(A)=0\wedge B\subset A]\implies B\in \mathcal{A}[/math] | |
Finite measure | [ilmath]\mu[/ilmath] is a finite measure if every set [ilmath]\in\mathcal{A} [/ilmath] is finite. | |
[ilmath]\sigma[/ilmath]-finite measure | [ilmath]\mu[/ilmath] is [ilmath]\sigma[/ilmath]-finite if every set [ilmath]\in\mathcal{A} [/ilmath] is [ilmath]\sigma[/ilmath]-finite |
Contrast with pre-measure
Note: the family [math]A_n[/math] must be pairwise disjoint
Property | Measure | Pre-measure |
---|---|---|
[math]\mu:\mathcal{A}\rightarrow[0,\infty][/math] | [math]\mu_0:R\rightarrow[0,\infty][/math] | |
[math]\mu(\emptyset)=0[/math] | [math]\mu_0(\emptyset)=0[/math] | |
Finitely additive | [math]\mu\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu(A_i)[/math] | [math]\mu_0\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu_0(A_i)[/math] |
Countably additive | [math]\mu\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu(A_n)[/math] | If [math]\bigudot^\infty_{n=1}A_n\in R[/math] then [math]\mu_0\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu_0(A_n)[/math] |
Properties
Here [ilmath](X,\mathcal{A},\mu)[/ilmath] is a measure space, and [ilmath]A,B\in\mathcal{A} [/ilmath]
- Finitely additive: if [ilmath]A\cap B=\emptyset[/ilmath] then [ilmath]\mu_0(A\udot B)=\mu_0(A)+\mu_0(B)[/ilmath]
- Follows immediately from definition (property 2)
- Monotonic: [Note 2] if [ilmath]A\subseteq B[/ilmath] then [ilmath]\mu_0(A)\le\mu_0(B)[/ilmath]
TODO: Be bothered to write out
- If [ilmath]A\subseteq B[/ilmath] and [ilmath]\mu_0(A)<\infty[/ilmath] then [ilmath]\mu_0(B-A)=\mu_0(B)-\mu(A)[/ilmath]
TODO: Be bothered, note the significance of the finite-ness of [ilmath]A[/ilmath] - see Extended real value
- Strongly additive: [ilmath]\mu_0(A\cup B)=\mu_0(A)+\mu_0(B)-\mu_0(A\cap B)[/ilmath]
TODO: Be bothered
- Subadditive: [ilmath]\mu_0(A\cup B)\le\mu_0(A)+\mu_0(B)[/ilmath]
TODO: Again - be bothered
Related theorems
See also
Notes
- ↑ What else is there? Measures, Integrals and Martingales mentions this
- ↑ Sometimes stated as monotone (it is monotone in Measures, Integrals and Martingales in fact!)
References
- ↑ Measures, Integrals and Martingales - Rene L. Schilling
Old page
Not to be confused with Pre-measure
Definition
A [ilmath]\sigma[/ilmath]-ring [ilmath]\mathcal{A} [/ilmath] and a countably additive, extended real valued. non-negative set function [math]\mu:\mathcal{A}\rightarrow[0,\infty][/math] is a measure. That is:
- [ilmath]\mu(\emptyset)=0[/ilmath]
- [math]\mu\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu(A_n)[/math]
- [math]\mu(S)\ge 0\ \forall S\in\mathcal{A}[/math]
Contrast with pre-measure
Note: the family [math]A_n[/math] must be pairwise disjoint
Property | Measure | Pre-measure |
---|---|---|
[math]\mu:\mathcal{A}\rightarrow[0,\infty][/math] | [math]\mu_0:R\rightarrow[0,\infty][/math] | |
[math]\mu(\emptyset)=0[/math] | [math]\mu_0(\emptyset)=0[/math] | |
Finitely additive | [math]\mu\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu(A_i)[/math] | [math]\mu_0\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu_0(A_i)[/math] |
Countably additive | [math]\mu\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu(A_n)[/math] | If [math]\bigudot^\infty_{n=1}A_n\in R[/math] then [math]\mu_0\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu_0(A_n)[/math] |
Terminology
These terms apply to pre-measures to, rather [ilmath]\mathcal{A} [/ilmath] you would use the ring the pre-measure is defined on.
Complete measure
A measure is complete if for [ilmath]A\in\mathcal{A} [/ilmath] we have [math][\mu(A)=0\wedge B\subset A]\implies B\in \mathcal{A}[/math]
Finite
A set [ilmath]A\in\mathcal{A} [/ilmath] is finite if [ilmath]\mu(A)<\infty[/ilmath] - we say "[ilmath]A[/ilmath] has finite measure"
Finite measure
[ilmath]\mu[/ilmath] is a finite measure if every set [ilmath]\in\mathcal{A} [/ilmath] is finite.
Sigma-finite
A set [ilmath]A\in\mathcal{A} [/ilmath] is [ilmath]\sigma[/ilmath]-finite if [math]\exists(A_n)_{n=1}^\infty:[A\subseteq\cup^\infty_{n=1}A_n\wedge(\forall A_n,\ \mu(A_n)<\infty)][/math]
Sigma-finite measure
[ilmath]\mu[/ilmath] is [ilmath]\sigma[/ilmath]-finite if every set [ilmath]\in\mathcal{A} [/ilmath] is [ilmath]\sigma[/ilmath]-finite
Total
If [ilmath]\mathcal{A} [/ilmath] is a [ilmath]\sigma[/ilmath]-algebra rather than a ring (that is [ilmath]X\in\mathcal{A} [/ilmath] where [ilmath]X[/ilmath] is the space) then we use
Totally finite measure
If [ilmath]X[/ilmath] is finite
Totally sigma-finite measure
If [ilmath]X[/ilmath] is [ilmath]\sigma[/ilmath]-finite
Examples
Trivial measures
Given the Measurable space [ilmath](X,\mathcal{A})[/ilmath] we can define:
[math]\mu:\mathcal{A}\rightarrow\{0,+\infty\}[/math] by [math]\mu(A)=\left\{\begin{array}{lr} 0 & \text{if }A=\emptyset \\ +\infty & \text{otherwise} \end{array}\right.[/math]
Another trivial measure is:
[math]v:\mathcal{A}\rightarrow\{0\}[/math] by [math]v(A)=0[/math] for all [math]A\in\mathcal{A}[/math]