Difference between revisions of "Pre-measure/Properties in common with measure"

From Maths
Jump to: navigation, search
(Moved from pre-measure page)
 
m
Line 1: Line 1:
{{Begin Inline Theorem}}
+
<noinclude>{{Extra Maths}}</noinclude>{{Begin Inline Theorem}}
 
* '''Finitely additive:''' if {{M|1=A\cap B=\emptyset}} then {{M|1=\mu_0(A\udot B)=\mu_0(A)+\mu_0(B)}}
 
* '''Finitely additive:''' if {{M|1=A\cap B=\emptyset}} then {{M|1=\mu_0(A\udot B)=\mu_0(A)+\mu_0(B)}}
 
{{Begin Inline Proof}}
 
{{Begin Inline Proof}}
Line 23: Line 23:
 
{{Begin Inline Proof}}
 
{{Begin Inline Proof}}
 
{{Todo|Again - be bothered}}
 
{{Todo|Again - be bothered}}
{{End Proof}}{{End Theorem}}
+
{{End Proof}}{{End Theorem}}<noinclude>
 +
==Notes==
 +
<references group="Note"/>
 +
==References==
 +
<references/>
 +
{{Theorem Of|Measure Theory}}
 +
</noinclude>

Revision as of 15:07, 29 July 2015

\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }
[Expand]

  • Finitely additive: if A\cap B=\emptyset then \mu_0(A\udot B)=\mu_0(A)+\mu_0(B)

[Expand]

  • Monotonic: [Note 1] if A\subseteq B then \mu_0(A)\le\mu_0(B)

[Expand]

  • If A\subseteq B and \mu_0(A)<\infty then

[Expand]

  • Strongly additive: \mu_0(A\cup B)=\mu_0(A)+\mu_0(B)-\mu_0(A\cap B)

[Expand]

  • Subadditive: \mu_0(A\cup B)\le\mu_0(A)+\mu_0(B)

Notes

  1. Jump up Sometimes stated as monotone (it is monotone in Measures, Integrals and Martingales in fact!)

References