Difference between revisions of "Set subtraction"

From Maths
Jump to: navigation, search
(Created page with "==Definition== Given two sets, {{M|A}} and {{M|B}} we define ''set subtraction'' as follows: * {{M|1=A-B=\{x\in A\vert x\notin B\} }} ==Other names== * Relative complement **...")
 
m
Line 2: Line 2:
 
Given two sets, {{M|A}} and {{M|B}} we define ''set subtraction'' as follows:
 
Given two sets, {{M|A}} and {{M|B}} we define ''set subtraction'' as follows:
 
* {{M|1=A-B=\{x\in A\vert x\notin B\} }}
 
* {{M|1=A-B=\{x\in A\vert x\notin B\} }}
 +
===Equivalent definitions===
 +
{{Begin Inline Theorem}}
 +
* {{M|1=A-B=(A^c\cup B)^c}}
 +
{{Begin Inline Proof}}
 +
{{Todo|Be bothered to do this}}
 +
{{End Proof}}{{End Theorem}}
 
==Other names==
 
==Other names==
 
* Relative complement
 
* Relative complement
Line 9: Line 15:
 
* {{M|A\setminus B}}
 
* {{M|A\setminus B}}
  
==Expressions that are equal to set subtraction==
+
==Trivial expressions for set subtraction==
 
{{Begin Inline Theorem}}
 
{{Begin Inline Theorem}}
* {{M|1=A-B=(A^c\cup B)^c}}
+
'''Claim:''' {{M|1=(A-B)-C=A-(B\cup C)}}
 
{{Begin Inline Proof}}
 
{{Begin Inline Proof}}
{{Todo|Be bothered to do this}}
+
'''Proof:'''
 +
* Note that {{M|1=A-B=(A^c\cup B)^c}} so {{M|1=(A-B)-C = ((A-B)^c\cup B)^c =(((A^c\cup B)^c)^c\cup C)^c}}
 +
** But: {{M|1=(A^c)^c=A}} so:
 +
*** {{M|1=(A-B)-C=(A^c\cup B\cup C)^c=(A^c\cup(B\cup C))^c=A-(B\cup C)}}
 +
{{Todo|Make this proof neat}}
 
{{End Proof}}{{End Theorem}}
 
{{End Proof}}{{End Theorem}}
 +
 
==See also==
 
==See also==
 
* [[Set complement]]
 
* [[Set complement]]

Revision as of 15:35, 9 December 2015

Definition

Given two sets, [ilmath]A[/ilmath] and [ilmath]B[/ilmath] we define set subtraction as follows:

  • [ilmath]A-B=\{x\in A\vert x\notin B\}[/ilmath]

Equivalent definitions

  • [ilmath]A-B=(A^c\cup B)^c[/ilmath]




TODO: Be bothered to do this


Other names

  • Relative complement
    • This comes from the fact that the complement of a subset of [ilmath]X[/ilmath], [ilmath]A[/ilmath] is just [ilmath]X-A[/ilmath]

Notations

Other notations include:

  • [ilmath]A\setminus B[/ilmath]

Trivial expressions for set subtraction

Claim: [ilmath](A-B)-C=A-(B\cup C)[/ilmath]


Proof:

  • Note that [ilmath]A-B=(A^c\cup B)^c[/ilmath] so [ilmath](A-B)-C = ((A-B)^c\cup B)^c =(((A^c\cup B)^c)^c\cup C)^c[/ilmath]
    • But: [ilmath](A^c)^c=A[/ilmath] so:
      • [ilmath](A-B)-C=(A^c\cup B\cup C)^c=(A^c\cup(B\cup C))^c=A-(B\cup C)[/ilmath]

TODO: Make this proof neat



See also

References



TODO: Find references