Difference between revisions of "Norm/Heading"
From Maths
< Norm
(Created page with "{{Infobox|title=Norm|above=<span style="font-size:2em;">{{M|\Vert\cdot\Vert:V\rightarrow\mathbb{R} }}</span><br/>Where {{M|V}} is a vector space over the field {{M|\ma...") |
m |
||
Line 1: | Line 1: | ||
− | {{Infobox|title=Norm|above=<span style="font-size:2em;">{{M|\Vert\cdot\Vert:V\rightarrow\mathbb{R} }}</span><br/>Where {{M|V}} is a [[vector space]] over the [[field]] {{M|\mathbb{R} }} or {{M|\mathbb{C} }}}}A ''norm'' is a an abstraction of the notion of the "length of a vector". Every norm is a [[metric]] and every [[inner product]] is a norm (see [[Subtypes of topological spaces]] for more information), thus every ''normed vector space'' is a [[topological space]] to, so all the [[topology theorems]] apply. Norms are especially useful in [[functional analysis]] and also for [[differentiation]]. | + | {{Infobox |
+ | |title=Norm | ||
+ | |above=<span style="font-size:2em;">{{M|\Vert\cdot\Vert:V\rightarrow\mathbb{R} }}</span><br/>Where {{M|V}} is a [[vector space]] over the [[field]] {{M|\mathbb{R} }} or {{M|\mathbb{C} }} | ||
+ | |header1=[[subtypes of topological spaces|relation to other topological spaces]] | ||
+ | |label1=''is a'' | ||
+ | |data1=<nowiki/> | ||
+ | * [[metric space]] | ||
+ | * [[topological space]] | ||
+ | |label2=''contains all'' | ||
+ | |data2=<nowiki/> | ||
+ | * [[inner product space|inner product spaces]] | ||
+ | |header3=Related objects | ||
+ | |label3=Induced [[metric]] | ||
+ | |data3=<nowiki/> | ||
+ | * {{M|1=d_{\Vert\cdot\Vert}:V\times V\rightarrow\mathbb{R}_{\ge 0} }} | ||
+ | * {{M|1=d_{\Vert\cdot\Vert}:(x,y)\mapsto\Vert x-y\Vert}} | ||
+ | |label4=Induced by [[inner product]] | ||
+ | |data4=<nowiki/> | ||
+ | * {{M|1=\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:V\rightarrow\mathbb{R}_{\ge 0} }} | ||
+ | * {{M|1=\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:x\mapsto\sqrt{\langle x,x\rangle} }} | ||
+ | }}A ''norm'' is a an abstraction of the notion of the "length of a vector". Every norm is a [[metric]] and every [[inner product]] is a norm (see [[Subtypes of topological spaces]] for more information), thus every ''normed vector space'' is a [[topological space]] to, so all the [[topology theorems]] apply. Norms are especially useful in [[functional analysis]] and also for [[differentiation]]. |
Revision as of 11:50, 8 January 2016
Norm | |
[ilmath]\Vert\cdot\Vert:V\rightarrow\mathbb{R} [/ilmath] Where [ilmath]V[/ilmath] is a vector space over the field [ilmath]\mathbb{R} [/ilmath] or [ilmath]\mathbb{C} [/ilmath] | |
relation to other topological spaces | |
---|---|
is a | |
contains all | |
Related objects | |
Induced metric |
|
Induced by inner product |
|