Difference between revisions of "Vector space"

From Maths
Jump to: navigation, search
(Created page with "{{Todo}}")
 
m
Line 1: Line 1:
{{Todo}}
+
==Definition==
 +
A vector space {{M|V}} over a [[Field|field]] {{M|F}} is a non empty set {{M|V}} and the binary operations:
 +
* <math>+:V\times V\rightarrow V</math> given by <math>+(x,y)=x+y</math> - vector addition
 +
* <math>\times:F\times V\rightarrow V</math> given by  <math>\times(\lambda,x)=\lambda x</math> - scalar multiplication
 +
Such that the following 8 "axioms of a vector space" hold
 +
===Axioms of a vector space===
 +
# <math>(x+y)+z=x+(y+z)\ \forall x,y,z\in V</math>
 +
# <math>x+y=y+x\ \forall x,y\in V</math>
 +
# <math>\exists e_a\in V\forall x\in V:x+e_a=x</math> - this <math>e_a</math> is denoted <math>0</math> once proved unique.
 +
# <math>\forall x\in V\ \exists y\in V:x+y=e_a</math> - this <math>y</math> is denoted <math>-x</math> once proved unique.
 +
# <math>\lambda(x+y)=\lambda x+\lambda y\ \forall\lambda\in F,\ x,y\in V</math>
 +
# <math>(\lambda+\mu)x = \lambda x+\mu x\ \forall\lambda,\mu\in F,\ x\in V</math>
 +
# <math>\lambda(\mu x)=(\lambda\mu)x\ \forall\lambda,\mu\in F,\ x\in V</math>
 +
# <math>\exists e_m\in F\forall x\in V:e_m x = x</math> - this <math>e_m</math> is denoted <math>1</math> once proved unique.
 +
===Example===
 +
Take <math>\mathbb{R}^n</math>, an entry <math>v\in\mathbb{R}^n</math> may be denoted <math>(v_1,...,v_n)=v</math>, scalar multiplication and addition are defined as follows:
 +
* <math>\lambda\in\mathbb{R},v\in\mathbb{R}^n</math> we define scalar multiplication <math>\lambda v=(\lambda v_1,...,\lambda v_n)</math>
 +
* <math>u,v\in\mathbb{R}^n</math> - we define addition as <math>u+v=(u_1+v_1,...,u_n+v_n)</math>
 +
 
 +
==Homomorphism between vector spaces==
 +
A homomorphism between vector spaces is a [[Linear map|linear map]]
 +
 
 +
{{Definition|Linear Algebra}}

Revision as of 15:04, 7 March 2015

Definition

A vector space [ilmath]V[/ilmath] over a field [ilmath]F[/ilmath] is a non empty set [ilmath]V[/ilmath] and the binary operations:

  • [math]+:V\times V\rightarrow V[/math] given by [math]+(x,y)=x+y[/math] - vector addition
  • [math]\times:F\times V\rightarrow V[/math] given by [math]\times(\lambda,x)=\lambda x[/math] - scalar multiplication

Such that the following 8 "axioms of a vector space" hold

Axioms of a vector space

  1. [math](x+y)+z=x+(y+z)\ \forall x,y,z\in V[/math]
  2. [math]x+y=y+x\ \forall x,y\in V[/math]
  3. [math]\exists e_a\in V\forall x\in V:x+e_a=x[/math] - this [math]e_a[/math] is denoted [math]0[/math] once proved unique.
  4. [math]\forall x\in V\ \exists y\in V:x+y=e_a[/math] - this [math]y[/math] is denoted [math]-x[/math] once proved unique.
  5. [math]\lambda(x+y)=\lambda x+\lambda y\ \forall\lambda\in F,\ x,y\in V[/math]
  6. [math](\lambda+\mu)x = \lambda x+\mu x\ \forall\lambda,\mu\in F,\ x\in V[/math]
  7. [math]\lambda(\mu x)=(\lambda\mu)x\ \forall\lambda,\mu\in F,\ x\in V[/math]
  8. [math]\exists e_m\in F\forall x\in V:e_m x = x[/math] - this [math]e_m[/math] is denoted [math]1[/math] once proved unique.

Example

Take [math]\mathbb{R}^n[/math], an entry [math]v\in\mathbb{R}^n[/math] may be denoted [math](v_1,...,v_n)=v[/math], scalar multiplication and addition are defined as follows:

  • [math]\lambda\in\mathbb{R},v\in\mathbb{R}^n[/math] we define scalar multiplication [math]\lambda v=(\lambda v_1,...,\lambda v_n)[/math]
  • [math]u,v\in\mathbb{R}^n[/math] - we define addition as [math]u+v=(u_1+v_1,...,u_n+v_n)[/math]

Homomorphism between vector spaces

A homomorphism between vector spaces is a linear map