Difference between revisions of "Metric/Heading"

From Maths
Jump to: navigation, search
(Created page with "{{Infobox |title=Metric |above=<span style="font-size:2em;">{{M|d:X\times X\rightarrow\mathbb{R}_{\ge 0} }}</span><br/>Where {{M|X}} is any set |header1=subtypes of topo...")
 
m (Replaced content with "{{:Metric/Infobox}}A ''metric'' is the most abstract notion of distance. It requires no structure on the underlying set.")
 
Line 1: Line 1:
{{Infobox
+
{{:Metric/Infobox}}A ''metric'' is the most abstract notion of distance. It requires no structure on the underlying set.
|title=Metric
+
|above=<span style="font-size:2em;">{{M|d:X\times X\rightarrow\mathbb{R}_{\ge 0} }}</span><br/>Where {{M|X}} is any [[set]]
+
|header1=[[subtypes of topological spaces|relation to other topological spaces]]
+
|label1=''is a''
+
|data1=<nowiki/>
+
* [[topological space]]
+
|label2=''contains all''
+
|data2=<nowiki/>
+
* [[normed space|normed vector spaces]]
+
* [[inner product space|inner product spaces]]
+
|header3=Related objects
+
|label3=Induced by [[norm]]
+
|data3=<nowiki/>
+
* {{M|1=d_{\Vert\cdot\Vert}:V\times V\rightarrow\mathbb{R}_{\ge 0} }}
+
* {{M|1=d_{\Vert\cdot\Vert}:(x,y)\mapsto\Vert x-y\Vert}}
+
For {{M|V}} a [[vector space]] over {{M|\mathbb{R} }} or {{M|\mathbb{C} }}
+
|label4=Induced by [[inner product]]
+
|data4=<nowiki/>
+
An [[inner product]] induces a [[norm]]:
+
* {{M|1=\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:V\rightarrow\mathbb{R}_{\ge 0} }}
+
* {{M|1=\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:x\mapsto\sqrt{\langle x,x\rangle} }}
+
Which induces a ''metric'':
+
* {{M|1=d_{\langle\cdot,\cdot\rangle}:V\times V\rightarrow\mathbb{R}_{\ge 0} }}
+
* {{M|1=d_{\langle\cdot,\cdot\rangle}:(x,y)\mapsto\sqrt{\langle x-y,x-y\rangle} }}
+
}}A ''metric'' is the most abstract notion of distance. It requires no structure on the underlying set.
+

Latest revision as of 10:39, 11 March 2016

Metric
[ilmath]d:X\times X\rightarrow\mathbb{R}_{\ge 0} [/ilmath]
Where [ilmath]X[/ilmath] is any set
relation to other topological spaces
is a
contains all
Related objects
Induced by norm
  • [ilmath]d_{\Vert\cdot\Vert}:V\times V\rightarrow\mathbb{R}_{\ge 0}[/ilmath]
  • [ilmath]d_{\Vert\cdot\Vert}:(x,y)\mapsto\Vert x-y\Vert[/ilmath]

For [ilmath]V[/ilmath] a vector space over [ilmath]\mathbb{R} [/ilmath] or [ilmath]\mathbb{C} [/ilmath]

Induced by inner product

An inner product induces a norm:

  • [ilmath]\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:V\rightarrow\mathbb{R}_{\ge 0}[/ilmath]
  • [ilmath]\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:x\mapsto\sqrt{\langle x,x\rangle}[/ilmath]

Which induces a metric:

  • [ilmath]d_{\langle\cdot,\cdot\rangle}:V\times V\rightarrow\mathbb{R}_{\ge 0}[/ilmath]
  • [ilmath]d_{\langle\cdot,\cdot\rangle}:(x,y)\mapsto\sqrt{\langle x-y,x-y\rangle}[/ilmath]
A metric is the most abstract notion of distance. It requires no structure on the underlying set.