Difference between revisions of "Equivalence relation"
m |
(Refactoring this page to be more in line with other pages on relations.) |
||
Line 1: | Line 1: | ||
− | {{ | + | {{Refactor notice}} |
+ | __TOC__ | ||
+ | |||
+ | ==Definition== | ||
+ | A [[relation]] {{M|\sim}} in {{M|X}}<ref group="Notes">This terminology means {{M|\sim \subseteq X\times X}}, as described on the [[relation]] page.</ref> is an ''equivalence relation'' if it has the following properties{{rSTTJ}}: | ||
+ | * Reflexivity, {{M|x\sim x}} | ||
+ | * Symmetricity, {{M|x\sim y}} implies {{M|y\sim x}} | ||
+ | * Transitivity, {{M|x\sim y}} and {{M|y\sim z}} implies {{M|x\sim z}}. | ||
+ | {| class="wikitable" border="1" | ||
+ | |- | ||
+ | ! | ||
+ | ! Name | ||
+ | ! Definition | ||
+ | |- | ||
+ | ! 1 | ||
+ | | [[Relation#Types_of_relation|Reflexive]] | ||
+ | | {{M|\forall x\in X[(x,x) \in \sim]}}. Often written {{M|\forall x\in X[x\sim x]}}. | ||
+ | |- | ||
+ | ! 2 | ||
+ | | [[Relation#Types_of_relation|Symmetric]] | ||
+ | | {{M|\forall x,y\in X[M|(x,y) \in \sim \implies (y,x) \in \sim]}}. Often written {{M|\forall x,y \in X[x\sim y \implies y\sim x]}}. | ||
+ | |- | ||
+ | ! 3 | ||
+ | | [[Relation#Types_of_relation|Transitive]] | ||
+ | | {{M|\forall x,y,z\in X[((x,y) \in \sim \wedge (y,z) \in \sim) \implies (x,z) \in \sim]}}. Often written {{M|\forall x,y,z \in X [(x\sim y \wedge y\sim z) \implies x\sim z]}}. | ||
+ | |} | ||
+ | ==Terminology== | ||
+ | *Sometimes, letters and other designations are used with symbols to distinguish between different equivalence relations, such as {{M|a \equiv_x b}}. | ||
+ | **For an {{M|x\in X}}, the [[equivalence class]] is written {{M|[x]}} or {{M|x_\sim}}. That is, {{M|\forall a\in X[a\in[x] \implies a\sim x]}}. | ||
+ | ==See Also== | ||
+ | *[[Relation]] | ||
+ | *[[Equivalence class]] | ||
+ | **[[An equivalence class partitions a set]]. | ||
+ | ==Notes== | ||
+ | <references group="Notes"/> | ||
+ | ==References== | ||
+ | <references/> | ||
+ | {{Relations navbox|plain}} | ||
+ | {{Definition|Set Theory|Abstract Algebra}} | ||
+ | |||
+ | |||
+ | |||
+ | =Old Page= | ||
An equivalence relation is a special kind of [[Relation|relation]] | An equivalence relation is a special kind of [[Relation|relation]] |
Revision as of 17:01, 18 March 2016
Contents
Definition
A relation [ilmath]\sim[/ilmath] in [ilmath]X[/ilmath][Notes 1] is an equivalence relation if it has the following properties[1]:
- Reflexivity, [ilmath]x\sim x[/ilmath]
- Symmetricity, [ilmath]x\sim y[/ilmath] implies [ilmath]y\sim x[/ilmath]
- Transitivity, [ilmath]x\sim y[/ilmath] and [ilmath]y\sim z[/ilmath] implies [ilmath]x\sim z[/ilmath].
Name | Definition | |
---|---|---|
1 | Reflexive | [ilmath]\forall x\in X[(x,x) \in \sim][/ilmath]. Often written [ilmath]\forall x\in X[x\sim x][/ilmath]. |
2 | Symmetric | [ilmath]\forall x,y\in X[M[/ilmath]. Often written [ilmath]\forall x,y \in X[x\sim y \implies y\sim x][/ilmath]. |
3 | Transitive | [ilmath]\forall x,y,z\in X[((x,y) \in \sim \wedge (y,z) \in \sim) \implies (x,z) \in \sim][/ilmath]. Often written [ilmath]\forall x,y,z \in X [(x\sim y \wedge y\sim z) \implies x\sim z][/ilmath]. |
Terminology
- Sometimes, letters and other designations are used with symbols to distinguish between different equivalence relations, such as [ilmath]a \equiv_x b[/ilmath].
- For an [ilmath]x\in X[/ilmath], the equivalence class is written [ilmath][x][/ilmath] or [ilmath]x_\sim[/ilmath]. That is, [ilmath]\forall a\in X[a\in[x] \implies a\sim x][/ilmath].
See Also
Notes
- ↑ This terminology means [ilmath]\sim \subseteq X\times X[/ilmath], as described on the relation page.
References
|
Old Page
An equivalence relation is a special kind of relation
Required properties
Given a relation [ilmath]R[/ilmath] in [ilmath]A[/ilmath] we require the following properties to define a relation (these are restated for convenience from the relation page)
Reflexive
A relation [ilmath]R[/ilmath] if for all [ilmath]a\in A[/ilmath] we have [ilmath]aRa[/ilmath]
Symmetric
A relation [ilmath]R[/ilmath] is symmetric if for all [ilmath]a,b\in A[/ilmath] we have [ilmath]aRb\implies bRa[/ilmath]
Transitive
A relation [ilmath]R[/ilmath] is transitive if for all [ilmath]a,b,c\in A[/ilmath] we have [ilmath]aRb\text{ and }bRc\implies aRc[/ilmath]
Definition
A relation [ilmath]R[/ilmath] is an equivalence relation if it is:
- reflexive
- symmetric
- transitive