Difference between revisions of "Symmetric difference"

From Maths
Jump to: navigation, search
(Finally, I always forget what symmetric difference is!)
 
(No difference)

Latest revision as of 00:59, 21 March 2016

(Unknown grade)
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Find a ven diagram and make an infobox
(Unknown grade)
This page requires references, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable, it just means that the author of the page doesn't have a book to hand, or remember the book to find it, which would have been a suitable reference.

Definition

Let [ilmath]A,B\in\mathcal{P}(X)[/ilmath] be two subsets of a set [ilmath]X[/ilmath]. We define the symmetric difference of [ilmath]A[/ilmath] and [ilmath]B[/ilmath] as[1]:

  • [ilmath]A\triangle B:=(A-B)\cup(B-A)[/ilmath][Note 1]
    • In words: [ilmath]A\triangle B[/ilmath] contains (everything in [ilmath]A[/ilmath] and not in [ilmath]B[/ilmath]) and (everything in [ilmath]B[/ilmath] but not in [ilmath]A[/ilmath]).

Claim 1: this is equivalent to [ilmath]A\triangle B:=(A\cap B^C)\cup(A^C\cap B)[/ilmath][1]

Proof of claims

(Unknown grade)
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
Trivial, be bothered to show this

Notes

  1. Here [ilmath]A-B[/ilmath] denotes set subtraction.

References

  1. 1.0 1.1 Measure Theory - Paul R. Halmos