Difference between revisions of "Notes:Halmos measure theory skeleton"
From Maths
(Saving work) |
(No difference)
|
Revision as of 18:19, 22 March 2016
Skeleton
- Ring of sets
- Sigma-ring
- additive set function
- measure, [ilmath]\mu[/ilmath] - extended real valued, non negative, countably additive set function defined on a ring of sets
- hereditary system - a system of sets, [ilmath]\mathcal{E} [/ilmath] such that if [ilmath]E\in\mathcal{E} [/ilmath] then [ilmath]\forall F\in\mathcal{P}(E)[F\in\mathcal{E}][/ilmath]
- hereditary ring generated by
- subadditivity
- outer measure, [ilmath]\mu^*[/ilmath] (p42) - extended real valued, non-negative, monotone and countably subadditive set function on an hereditary [ilmath]\sigma[/ilmath]-ring with [ilmath]\mu^*(\emptyset)=0[/ilmath]
- Theorem: If [ilmath]\mu[/ilmath] is a measure on a ring [ilmath]\mathcal{R} [/ilmath] and if:
- [ilmath]\forall A\in\mathbf{H}(\mathcal{R})[\mu^*(A)=\text{inf}\{\sum^\infty_{n=1}\mu(A_n)\ \vert\ (A_n)_{n=1}^\infty\subseteq\mathcal{R} \wedge A\subseteq \bigcup^\infty_{n=1}A_n\}][/ilmath] then [ilmath]\mu^*[/ilmath] is an extension of [ilmath]\mu[/ilmath] to an outer measure on [ilmath]\mathbf{H}(\mathcal{R})[/ilmath]
- [ilmath]\mu^*[/ilmath] is the outer measure induced by the measure [ilmath]\mu[/ilmath]
- Theorem: If [ilmath]\mu[/ilmath] is a measure on a ring [ilmath]\mathcal{R} [/ilmath] and if: