Difference between revisions of "Notes:Halmos measure theory skeleton"
From Maths
m |
m (Saving work) |
||
Line 4: | Line 4: | ||
* [[additive set function]] | * [[additive set function]] | ||
* ''measure'', {{M|\mu}} - [[extended real valued]], non negative, [[countably additive set function]] defined on a [[ring of sets]] | * ''measure'', {{M|\mu}} - [[extended real valued]], non negative, [[countably additive set function]] defined on a [[ring of sets]] | ||
+ | ** ''complete measure'' - {{M|\mu}} is complete if: | ||
+ | *** {{M|1=\forall A\in\mathcal{R}\forall B[B\subseteq A\wedge\mu(A)=0\implies B\in\mathcal{R} ]}} | ||
* ''hereditary'' system - a system of sets, {{M|\mathcal{E} }} such that if {{M|E\in\mathcal{E} }} then {{M|\forall F\in\mathcal{P}(E)[F\in\mathcal{E}]}} | * ''hereditary'' system - a system of sets, {{M|\mathcal{E} }} such that if {{M|E\in\mathcal{E} }} then {{M|\forall F\in\mathcal{P}(E)[F\in\mathcal{E}]}} | ||
** ''hereditary ring generated by'' | ** ''hereditary ring generated by'' | ||
Line 13: | Line 15: | ||
* {{M|\mu^*}}-measurable - given an ''outer measure'' {{M|\mu^*}} on a hereditary {{sigma|ring}} {{M|\mathcal{H} }} a set {{M|A\in\mathcal{H} }} is ''{{M|\mu^*}}-measurable'' if: | * {{M|\mu^*}}-measurable - given an ''outer measure'' {{M|\mu^*}} on a hereditary {{sigma|ring}} {{M|\mathcal{H} }} a set {{M|A\in\mathcal{H} }} is ''{{M|\mu^*}}-measurable'' if: | ||
** {{M|1=\forall B\in\mathcal{H}[\mu^*(B)=\mu^*(A\cap B)+\mu^*(B\cap A')]}} | ** {{M|1=\forall B\in\mathcal{H}[\mu^*(B)=\mu^*(A\cap B)+\mu^*(B\cap A')]}} | ||
− | *** '''PROBLEM: How can we do [[complementation]] in a ring?''' | + | *** '''PROBLEM: How can we do [[complementation]] in a ring?'''<ref group="Solution">We only have to deal with {{M|A\cap B'}} which could just be Halmos abusing notation. If we take it literally ("{{M|1=B':=\{x(\in?)\vert x\notin B\} }}") we may be able to work through this. Note that [[the intersection of sets is a subset of each set]] so {{M|A\cap B'\subseteq A}} and is in fact {{M|1==A-B}}, so what Halmos is really saying is: |
+ | * {{M|1=A\in\mathcal{H} }} is {{M|\mu^*}}-measurable if: | ||
+ | ** {{M|1=\forall B\in\mathcal{H}[\mu^*(B)=\mu^*(B\cap A)+\mu^*(B-A)]}}</ref> | ||
+ | *** '''Solution: ''' Note that {{M|1=S\cap T'=S-T}}, so Halmos is really saying: | ||
+ | **** {{M|1=A\in\mathcal{H} }} is {{M|\mu^*}}''-measurable'' if: | ||
+ | ***** {{M|1=\forall B\in\mathcal{H}[\mu^*(B)=\mu^*(A\cap B)+\mu^*(B - A)]}} | ||
+ | * ''Theorem: '' if {{M|\mu^*}} is an ''outer measure'' on a hereditary {{sigma|ring}} {{M|\mathcal{H} }} and if {{M|\mathcal{S} }} is the class of all {{M|\mu^*}}-measurable sets, ''then {{M|\mathcal{S} }} is a [[ring of sets]]'' | ||
+ | * ''Theorem: '' (p46) - {{M|\mathcal{S} }} is a [[sigma-ring]] | ||
+ | * ''Theorem: '' - Every set of {{M|1=\mu^*=0}} belongs to {{M|\mathcal{S} }} and the set function {{M|\bar{\mu}:\mathcal{S}\rightarrow\bar{\mathbb{R} }_{\ge 0} }} is a ''complete'' measure ({{AKA}}: {{M|\bar{\mu} }} is the ''measure induced by'' {{M|\mu^*}}). | ||
+ | * ''Theorem'' - Every set in {{M|\sigma_R(\mathcal{R})}} is {{M|\mu^*}}''-measurable'' (the {{sigma|ring}} generated by {{M|\mathcal{R} }}) | ||
+ | ** Alternatively: {{M|\sigma_R(\mathcal{R})\subseteq\mathcal{S} }} | ||
+ | * ''Theorem'' - {{M|1=\forall A\in\mathbf{H}(\mathcal{R})[\underbrace{\mu^*(A)}_{\text{Outer} }=\underbrace{\text{inf}\{\bar{\mu}(B)\ \vert\ A\subseteq B\in\mathcal{S}\} }_{\text{Induced by } \bar{\mu} }=\underbrace{\{\bar{\mu}(B)\ \vert\ A\subseteq B\in\sigma_R(\mathcal{R})\} }_{\text{Induced by } \bar{\mu} }]}} | ||
+ | ** That is to say that: | ||
+ | *** Outer measure induced by {{M|\bar{\mu} }} on {{M|\sigma_R(\mathcal{R})}} AND | ||
+ | *** the outer measure induced by {{M|\bar{\mu} }} on {{M|\mathcal{S} }} | ||
+ | *** agree with {{M|\mu^*}} | ||
+ | * ''completion of a measure'' - p55 | ||
+ | * ''Theorem: '' if {{M|\mu}} is a {{sigma|finite}} measure on a {{sigma|ring}} {{M|\mathbb{R} }} and if {{M|\mu^*}} is the outer measure it induces, then: | ||
+ | ** The ''completion'' of the extension of {{M|\mu}} to {{M|\sigma_R(\mathcal{R})}} is identical with {{M|\mu^*}} on the class of all {{M|\mu^*}}-measurable sets | ||
+ | ==Solutions== | ||
+ | <references group="Solution"/> |
Revision as of 20:05, 22 March 2016
Skeleton
- Ring of sets
- Sigma-ring
- additive set function
- measure, [ilmath]\mu[/ilmath] - extended real valued, non negative, countably additive set function defined on a ring of sets
- complete measure - [ilmath]\mu[/ilmath] is complete if:
- [ilmath]\forall A\in\mathcal{R}\forall B[B\subseteq A\wedge\mu(A)=0\implies B\in\mathcal{R} ][/ilmath]
- complete measure - [ilmath]\mu[/ilmath] is complete if:
- hereditary system - a system of sets, [ilmath]\mathcal{E} [/ilmath] such that if [ilmath]E\in\mathcal{E} [/ilmath] then [ilmath]\forall F\in\mathcal{P}(E)[F\in\mathcal{E}][/ilmath]
- hereditary ring generated by
- subadditivity
- outer measure, [ilmath]\mu^*[/ilmath] (p42) - extended real valued, non-negative, monotone and countably subadditive set function on an hereditary [ilmath]\sigma[/ilmath]-ring with [ilmath]\mu^*(\emptyset)=0[/ilmath]
- Theorem: If [ilmath]\mu[/ilmath] is a measure on a ring [ilmath]\mathcal{R} [/ilmath] and if:
- [ilmath]\forall A\in\mathbf{H}(\mathcal{R})[\mu^*(A)=\text{inf}\{\sum^\infty_{n=1}\mu(A_n)\ \vert\ (A_n)_{n=1}^\infty\subseteq\mathcal{R} \wedge A\subseteq \bigcup^\infty_{n=1}A_n\}][/ilmath] then [ilmath]\mu^*[/ilmath] is an extension of [ilmath]\mu[/ilmath] to an outer measure on [ilmath]\mathbf{H}(\mathcal{R})[/ilmath]
- [ilmath]\mu^*[/ilmath] is the outer measure induced by the measure [ilmath]\mu[/ilmath]
- Theorem: If [ilmath]\mu[/ilmath] is a measure on a ring [ilmath]\mathcal{R} [/ilmath] and if:
- [ilmath]\mu^*[/ilmath]-measurable - given an outer measure [ilmath]\mu^*[/ilmath] on a hereditary [ilmath]\sigma[/ilmath]-ring [ilmath]\mathcal{H} [/ilmath] a set [ilmath]A\in\mathcal{H} [/ilmath] is [ilmath]\mu^*[/ilmath]-measurable if:
- [ilmath]\forall B\in\mathcal{H}[\mu^*(B)=\mu^*(A\cap B)+\mu^*(B\cap A')][/ilmath]
- PROBLEM: How can we do complementation in a ring?[Solution 1]
- Solution: Note that [ilmath]S\cap T'=S-T[/ilmath], so Halmos is really saying:
- [ilmath]A\in\mathcal{H}[/ilmath] is [ilmath]\mu^*[/ilmath]-measurable if:
- [ilmath]\forall B\in\mathcal{H}[\mu^*(B)=\mu^*(A\cap B)+\mu^*(B - A)][/ilmath]
- [ilmath]A\in\mathcal{H}[/ilmath] is [ilmath]\mu^*[/ilmath]-measurable if:
- [ilmath]\forall B\in\mathcal{H}[\mu^*(B)=\mu^*(A\cap B)+\mu^*(B\cap A')][/ilmath]
- Theorem: if [ilmath]\mu^*[/ilmath] is an outer measure on a hereditary [ilmath]\sigma[/ilmath]-ring [ilmath]\mathcal{H} [/ilmath] and if [ilmath]\mathcal{S} [/ilmath] is the class of all [ilmath]\mu^*[/ilmath]-measurable sets, then [ilmath]\mathcal{S} [/ilmath] is a ring of sets
- Theorem: (p46) - [ilmath]\mathcal{S} [/ilmath] is a sigma-ring
- Theorem: - Every set of [ilmath]\mu^*=0[/ilmath] belongs to [ilmath]\mathcal{S} [/ilmath] and the set function [ilmath]\bar{\mu}:\mathcal{S}\rightarrow\bar{\mathbb{R} }_{\ge 0} [/ilmath] is a complete measure (AKA: [ilmath]\bar{\mu} [/ilmath] is the measure induced by [ilmath]\mu^*[/ilmath]).
- Theorem - Every set in [ilmath]\sigma_R(\mathcal{R})[/ilmath] is [ilmath]\mu^*[/ilmath]-measurable (the [ilmath]\sigma[/ilmath]-ring generated by [ilmath]\mathcal{R} [/ilmath])
- Alternatively: [ilmath]\sigma_R(\mathcal{R})\subseteq\mathcal{S} [/ilmath]
- Theorem - [ilmath]\forall A\in\mathbf{H}(\mathcal{R})[\underbrace{\mu^*(A)}_{\text{Outer} }=\underbrace{\text{inf}\{\bar{\mu}(B)\ \vert\ A\subseteq B\in\mathcal{S}\} }_{\text{Induced by } \bar{\mu} }=\underbrace{\{\bar{\mu}(B)\ \vert\ A\subseteq B\in\sigma_R(\mathcal{R})\} }_{\text{Induced by } \bar{\mu} }][/ilmath]
- That is to say that:
- Outer measure induced by [ilmath]\bar{\mu} [/ilmath] on [ilmath]\sigma_R(\mathcal{R})[/ilmath] AND
- the outer measure induced by [ilmath]\bar{\mu} [/ilmath] on [ilmath]\mathcal{S} [/ilmath]
- agree with [ilmath]\mu^*[/ilmath]
- That is to say that:
- completion of a measure - p55
- Theorem: if [ilmath]\mu[/ilmath] is a [ilmath]\sigma[/ilmath]-finite measure on a [ilmath]\sigma[/ilmath]-ring [ilmath]\mathbb{R} [/ilmath] and if [ilmath]\mu^*[/ilmath] is the outer measure it induces, then:
- The completion of the extension of [ilmath]\mu[/ilmath] to [ilmath]\sigma_R(\mathcal{R})[/ilmath] is identical with [ilmath]\mu^*[/ilmath] on the class of all [ilmath]\mu^*[/ilmath]-measurable sets
Solutions
- ↑ We only have to deal with [ilmath]A\cap B'[/ilmath] which could just be Halmos abusing notation. If we take it literally ("[ilmath]B':=\{x(\in?)\vert x\notin B\}[/ilmath]") we may be able to work through this. Note that the intersection of sets is a subset of each set so [ilmath]A\cap B'\subseteq A[/ilmath] and is in fact [ilmath]=A-B[/ilmath], so what Halmos is really saying is:
- [ilmath]A\in\mathcal{H}[/ilmath] is [ilmath]\mu^*[/ilmath]-measurable if:
- [ilmath]\forall B\in\mathcal{H}[\mu^*(B)=\mu^*(B\cap A)+\mu^*(B-A)][/ilmath]
- [ilmath]A\in\mathcal{H}[/ilmath] is [ilmath]\mu^*[/ilmath]-measurable if: