Difference between revisions of "Notes:Measure theory plan"

From Maths
Jump to: navigation, search
(Created page with "==Purpose== This document is the ''plan'' for the measure theory notation and development on this site. ==Plan== * Introduce ring of sets * '''PRE-MEASURE''' ({{M|\bar{\m...")
(No difference)

Revision as of 01:16, 23 March 2016

Purpose

This document is the plan for the measure theory notation and development on this site.

Plan

  • Introduce ring of sets
  • PRE-MEASURE ([ilmath]\bar{\mu} [/ilmath]) - Introduce a (positive) extended real valued countably additive set function, [ilmath]\bar{\mu} [/ilmath] on that ring. This will be a pre-measure and these are easy to create (use Lebesgue measure as example) which is why they're the first step.
  • OUTER-MEASURE ([ilmath]\mu^*[/ilmath]) - a construct named because it measures from the outside of a set and comes down (the inf), this lets us "measure" on a power-set like construction (a hereditary [ilmath]\sigma[/ilmath]-ring) which contains every subset of every set in the ring, as well as being closed under countable union and set subtraction.
  • PROBLEM: Outer measures are only subadditive not additive so they're not really measures. Make sure this weakness is demonstrated.
  • We need to consider only the sets that have the property of dividing up every other set in the hereditary sigma-ring additively.
  • We then show this new structure is a ring
  • We then show this new structure is a [ilmath]\sigma[/ilmath]-ring
  • MEASURE ([ilmath]\mu[/ilmath]) - The restriction of the outer-measure, [ilmath]\mu^*[/ilmath], [ilmath]\mu[/ilmath] to this [ilmath]\sigma[/ilmath]-ring is a measure, a pre-measure but on a [ilmath]\sigma[/ilmath]-ring (instead of just ring)
  • Show [ilmath]\mu[/ilmath] is countably additive

We have now constructed a measure on a [ilmath]\sigma[/ilmath]-ring, [ilmath]\mu[/ilmath] from a pre-measure on a ring, [ilmath]\bar{\mu} [/ilmath]