Difference between revisions of "Measure"
m |
(Overwriting old page with new version, old page was viewed 973 times.) |
||
Line 1: | Line 1: | ||
− | {{ | + | {{Stub page|Requires further expansion}}{{Extra Maths}}{{:Measure/Infobox}} |
+ | __TOC__ | ||
==Definition== | ==Definition== | ||
− | + | A (positive) ''measure'', {{M|\mu}} is a [[set function]] from a [[sigma-ring|{{sigma|ring}}]], {{M|\mathcal{R} }}, to the positive [[extended real values]]<ref group="Note">Recall {{M|\bar{\mathbb{R} }_{\ge0} }} is {{M|\mathbb{R}_{\ge0}\cup\{+\infty\} }}</ref>, {{M|\bar{\mathbb{R} }_{\ge 0} }}{{rMTH}}{{rMIAMRLS}}{{rMT1VIB}}: | |
− | * {{ | + | * {{M|\mu:\mathcal{R}\rightarrow\bar{\mathbb{R} }_{\ge0} }} |
− | + | Such that: | |
− | + | * {{M|1=\forall(A_n)_{n=1}^\infty\subseteq\mathcal{R}\text{ pairwise disjoint }[\mu\left(\bigudot_{n=1}^\infty A_n\right)=\sum_{n=1}^\infty\mu(A_n)]}} ({{M|\mu}} is a [[countably additive set function]]) | |
− | + | ** Recall that "''pairwise disjoint''" means {{M|1=\forall i,j\in\mathbb{N}[i\ne j\implies A_i\cap A_j=\emptyset]}} | |
− | + | Entirely in words a (positive) ''measure'', {{M|\mu}} is: | |
− | + | * An ''[[extended real valued]]'' [[countably additive set function]] from a [[sigma-ring|{{sigma|ring}}]], {{M|\mathcal{R} }}; {{M|\mu:\mathcal{R}\rightarrow\bar{\mathbb{R} } }}. | |
+ | {{Note|Remember that every [[sigma-algebra|{{sigma|algebra}}]] is a {{sigma|ring}}, so this definition can be applied directly (and should be in the reader's mind) to {{sigma|algebras}}}} | ||
==Terminology== | ==Terminology== | ||
− | + | ===For a set=== | |
− | === | + | We may say a set {{M|A\in\mathcal{R} }} (for a [[sigma-ring|{{sigma|ring}}]] {{M|\mathcal{R} }}) is: |
{| class="wikitable" border="1" | {| class="wikitable" border="1" | ||
+ | |- | ||
! Term | ! Term | ||
− | ! | + | ! Meaning |
− | ! | + | ! Example |
|- | |- | ||
− | ! Finite | + | ! Finite<ref name="MTH"/> |
− | | | + | | if {{M|\mu(A)<\infty }} |
− | | | + | | |
+ | * {{M|A}} is ''finite'' | ||
+ | * {{M|A}} is of ''finite measure'' | ||
|- | |- | ||
− | ! {{ | + | ! {{sigma|finite}}<ref name="MTH"/> |
− | | | + | | if {{M|1=\exists(A_n)_{n=1}^\infty\subseteq\mathcal{R}\forall i\in\mathbb{N}[A\subseteq\bigcup_{n=1}^\infty A_n\wedge \mu(A_i)<\infty]}}<br/> |
+ | * In words: if there exists a sequence of sets in {{M|\mathcal{R} }} such that {{M|A}} is in their union and each set has finite measure. | ||
| | | | ||
+ | * {{M|A}} is ''{{sigma|finite}}'' | ||
+ | * {{M|A}} is of ''{{sigma|finite}} measure'' | ||
|} | |} | ||
− | ===Of | + | ===Of a measure=== |
+ | We may say a measure, {{M|\mu}} is: | ||
{| class="wikitable" border="1" | {| class="wikitable" border="1" | ||
|- | |- | ||
! Term | ! Term | ||
− | ! | + | ! Meaning |
− | ! | + | ! Example |
|- | |- | ||
− | ! | + | ! Finite<ref name="MTH"/> |
− | | {{M|\forall A\in\mathcal{ | + | | If every set in the {{sigma|ring}} the measure is defined on ''is of finite measure'' |
− | | | + | * Symbolically, if: {{M|1=\forall A\in\mathcal{R}[\mu(A)<\infty]}} |
− | + | | | |
− | + | *{{M|\mu}} is a finite measure | |
− | + | ||
− | + | ||
|- | |- | ||
− | ! {{ | + | ! {{sigma|finite}}<ref name="MTH"/> |
− | | {{ | + | | If every set in the {{sigma|ring}} the measure is defined on ''is of {{sigma|finite}} measure'' |
+ | * Symbolically, if: {{M|1=\forall A\in\mathcal{R}\exists(A_n)_{n=1}^\infty\subseteq\mathcal{R}\forall i\in\mathbb{N}[A\subseteq\bigcup_{n=1}^\infty A_n\wedge \mu(A_i)<\infty]}} | ||
| | | | ||
+ | * {{M|\mu}} is a {{sigma|finite}} measure | ||
+ | |- | ||
+ | ! Complete | ||
+ | | if {{M|1=\forall A\in\mathcal{R}\forall B\in\mathcal{P}(A)[(\mu(A)=0)\implies(B\in\mathcal{R})]}} | ||
+ | * In words: for every set of measure 0 in {{M|\mathcal{R} }} every subset of that set is also in {{M|\mathcal{R} }} | ||
+ | | | ||
+ | *{{M|\mu}} is a complete measure | ||
|} | |} | ||
− | == | + | ====Of a measure on a {{sigma|algebra}}==== |
− | + | If {{M|\mu:\mathcal{A}\rightarrow\bar{\mathbb{R} }_{\ge0} }} for a [[sigma-algebra|{{sigma|algebra}}]] {{M|\mathcal{A} }}<ref group="Note">Remember a sigma-algebra is just a sigma-ring containing the entire space.</ref> then we can define: | |
{| class="wikitable" border="1" | {| class="wikitable" border="1" | ||
|- | |- | ||
− | ! | + | ! Term |
− | ! | + | ! Meaning |
− | ! | + | ! Example |
|- | |- | ||
+ | ! Totally finite<ref name="MTH"/> | ||
+ | | if the measure of {{M|X}} is finite | ||
+ | * Symbolically, if {{M|\mu(X)<\infty}} | ||
| | | | ||
− | + | * {{M|\mu}} is totally finite | |
− | | | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
|- | |- | ||
− | | | + | ! Totally {{sigma|finite}}<ref name="MTH"/> |
− | | | + | | if {{M|X}} is of {{sigma|finite}} measure |
− | + | * Symbolically, if: {{M|1=\exists(A_n)_{n=1}^\infty\subseteq\mathcal{R}\forall i\in\mathbb{N}[X=\bigcup_{n=1}^\infty A_n\wedge \mu(A_i)<\infty]}} | |
+ | | | ||
+ | * {{M|\mu}} is totally {{sigma|finite}} | ||
|} | |} | ||
+ | ==Immediate properties== | ||
+ | {{Begin Inline Theorem}} | ||
+ | '''Claim: ''' {{M|1=\mu(\emptyset)=0}} | ||
+ | {{Begin Inline Proof}} | ||
+ | {{Requires proof|Trivial}} | ||
+ | {{End Proof}}{{End Theorem}} | ||
==Properties== | ==Properties== | ||
− | + | {{Todo|Countable subadditivity and so forth}} | |
+ | ===In common with a [[pre-measure]]=== | ||
{{:Pre-measure/Properties in common with measure}} | {{:Pre-measure/Properties in common with measure}} | ||
==Related theorems== | ==Related theorems== | ||
* [[A function is a measure iff it measures the empty set as 0, disjoint sets add, and it is continuous from below (with equiv. conditions)]] | * [[A function is a measure iff it measures the empty set as 0, disjoint sets add, and it is continuous from below (with equiv. conditions)]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Examples== | ==Examples== | ||
* [[Dirac measure]] | * [[Dirac measure]] | ||
* [[Counting measure]] | * [[Counting measure]] | ||
* [[Discrete probability measure]] | * [[Discrete probability measure]] | ||
− | + | * [[Lebesgue measure]] | |
===Trivial measures=== | ===Trivial measures=== | ||
− | + | Here {{M|\mathcal{R} }} is a [[sigma-ring|{{sigma|ring}}]]<ref group="Note">Remember every {{sigma|algebra}} is a {{sigma|ring}}, so {{M|\mathcal{R} }} could just as well be a {{sigma|algebra}}</ref> | |
− | + | # <math>\mu:\mathcal{R}\rightarrow\{0,+\infty\}</math> by <math>\mu(A)=\left\{\begin{array}{lr} | |
− | <math>\mu:\mathcal{ | + | |
0 & \text{if }A=\emptyset \\ | 0 & \text{if }A=\emptyset \\ | ||
+\infty & \text{otherwise} | +\infty & \text{otherwise} | ||
\end{array}\right.</math> | \end{array}\right.</math> | ||
− | + | #* Note that if we'd chosen a finite and non-zero value instead of {{M|+\infty}} it ''would not'' be a measure<ref group="Note">Unless {{M|\mathcal{R} }} was a ''trivial {{sigma|algebra}}'' consisting of the empty set and another set. </ref>, as take any non-empty {{M|A,B\in\mathcal{R} }} with {{M|1=A\cap B=\emptyset}}, for a measure we would have: | |
− | + | #** {{M|1=\mu(A\cup B)=\mu(A)+\mu(B) }}, which will yield {{M|1=v=2v\implies v=0}} contradicting that {{M|\mu}} maps non-empty sets to finite non-zero values | |
− | + | # <math>\mu:\mathcal{R}\rightarrow\{0\}</math> by <math>\mu:A\mapsto 0</math> is ''the'' trivial measure. | |
− | <math> | + | {{Requires references|That this is the trivial measure}} |
==See also== | ==See also== | ||
* [[Pre-measure]] | * [[Pre-measure]] | ||
* [[Outer-measure]] | * [[Outer-measure]] | ||
− | * [[ | + | * [[Constructing a measure from a pre-measure]] |
+ | * [[Measurable space]] | ||
+ | * [[Measure space]] | ||
+ | ==Notes== | ||
+ | <references group="Note"/> | ||
+ | ==References== | ||
+ | '''Note: ''' Inline with the [[Measure theory terminology doctrine]] the references do not define a ''measure'' exactly as such, only an object that fits the place we have named ''measure''. This sounds like a huge discrepancy but as is detailed on that page, it isn't. | ||
+ | <references/> | ||
+ | {{Measure theory navbox|plain}} | ||
{{Definition|Measure Theory}} | {{Definition|Measure Theory}} |
Revision as of 22:48, 30 March 2016
(Positive) Measure | |
[ilmath]\mu:\mathcal{R}\rightarrow\bar{\mathbb{R} }_{\ge0} [/ilmath] For a [ilmath]\sigma[/ilmath]-ring, [ilmath]\mathcal{R} [/ilmath] | |
Properties | |
---|---|
[ilmath]\forall\overbrace{(A_n)_{n=1}^\infty }^{\begin{array}{c}\text{pairwise}\\\text{disjoint}\end{array} }\subseteq\mathcal{R}[\mu\left(\bigudot_{n=1}^\infty A_n\right)=\sum^\infty_{n=1}\mu(A_n)][/ilmath] |
Contents
Definition
A (positive) measure, [ilmath]\mu[/ilmath] is a set function from a [ilmath]\sigma[/ilmath]-ring, [ilmath]\mathcal{R} [/ilmath], to the positive extended real values[Note 1], [ilmath]\bar{\mathbb{R} }_{\ge 0} [/ilmath][1][2][3]:
- [ilmath]\mu:\mathcal{R}\rightarrow\bar{\mathbb{R} }_{\ge0} [/ilmath]
Such that:
- [ilmath]\forall(A_n)_{n=1}^\infty\subseteq\mathcal{R}\text{ pairwise disjoint }[\mu\left(\bigudot_{n=1}^\infty A_n\right)=\sum_{n=1}^\infty\mu(A_n)][/ilmath] ([ilmath]\mu[/ilmath] is a countably additive set function)
- Recall that "pairwise disjoint" means [ilmath]\forall i,j\in\mathbb{N}[i\ne j\implies A_i\cap A_j=\emptyset][/ilmath]
Entirely in words a (positive) measure, [ilmath]\mu[/ilmath] is:
- An extended real valued countably additive set function from a [ilmath]\sigma[/ilmath]-ring, [ilmath]\mathcal{R} [/ilmath]; [ilmath]\mu:\mathcal{R}\rightarrow\bar{\mathbb{R} } [/ilmath].
Remember that every [ilmath]\sigma[/ilmath]-algebra is a [ilmath]\sigma[/ilmath]-ring, so this definition can be applied directly (and should be in the reader's mind) to [ilmath]\sigma[/ilmath]-algebras
Terminology
For a set
We may say a set [ilmath]A\in\mathcal{R} [/ilmath] (for a [ilmath]\sigma[/ilmath]-ring [ilmath]\mathcal{R} [/ilmath]) is:
Term | Meaning | Example |
---|---|---|
Finite[1] | if [ilmath]\mu(A)<\infty [/ilmath] |
|
[ilmath]\sigma[/ilmath]-finite[1] | if [ilmath]\exists(A_n)_{n=1}^\infty\subseteq\mathcal{R}\forall i\in\mathbb{N}[A\subseteq\bigcup_{n=1}^\infty A_n\wedge \mu(A_i)<\infty][/ilmath]
|
|
Of a measure
We may say a measure, [ilmath]\mu[/ilmath] is:
Term | Meaning | Example |
---|---|---|
Finite[1] | If every set in the [ilmath]\sigma[/ilmath]-ring the measure is defined on is of finite measure
|
|
[ilmath]\sigma[/ilmath]-finite[1] | If every set in the [ilmath]\sigma[/ilmath]-ring the measure is defined on is of [ilmath]\sigma[/ilmath]-finite measure
|
|
Complete | if [ilmath]\forall A\in\mathcal{R}\forall B\in\mathcal{P}(A)[(\mu(A)=0)\implies(B\in\mathcal{R})][/ilmath]
|
|
Of a measure on a [ilmath]\sigma[/ilmath]-algebra
If [ilmath]\mu:\mathcal{A}\rightarrow\bar{\mathbb{R} }_{\ge0} [/ilmath] for a [ilmath]\sigma[/ilmath]-algebra [ilmath]\mathcal{A} [/ilmath][Note 2] then we can define:
Term | Meaning | Example |
---|---|---|
Totally finite[1] | if the measure of [ilmath]X[/ilmath] is finite
|
|
Totally [ilmath]\sigma[/ilmath]-finite[1] | if [ilmath]X[/ilmath] is of [ilmath]\sigma[/ilmath]-finite measure
|
|
Immediate properties
Claim: [ilmath]\mu(\emptyset)=0[/ilmath]
The message provided is:
Properties
TODO: Countable subadditivity and so forth
In common with a pre-measure
- Finitely additive: if [ilmath]A\cap B=\emptyset[/ilmath] then [ilmath]\mu_0(A\udot B)=\mu_0(A)+\mu_0(B)[/ilmath]
- Follows immediately from definition (property 2)
- Monotonic: [Note 3] if [ilmath]A\subseteq B[/ilmath] then [ilmath]\mu_0(A)\le\mu_0(B)[/ilmath]
TODO: Be bothered to write out
- If [ilmath]A\subseteq B[/ilmath] and [ilmath]\mu_0(A)<\infty[/ilmath] then [ilmath]\mu_0(B-A)=\mu_0(B)-\mu(A)[/ilmath]
TODO: Be bothered, note the significance of the finite-ness of [ilmath]A[/ilmath] - see Extended real value
- Strongly additive: [ilmath]\mu_0(A\cup B)=\mu_0(A)+\mu_0(B)-\mu_0(A\cap B)[/ilmath]
TODO: Be bothered
- Subadditive: [ilmath]\mu_0(A\cup B)\le\mu_0(A)+\mu_0(B)[/ilmath]
TODO: Again - be bothered
Related theorems
Examples
Trivial measures
Here [ilmath]\mathcal{R} [/ilmath] is a [ilmath]\sigma[/ilmath]-ring[Note 4]
- [math]\mu:\mathcal{R}\rightarrow\{0,+\infty\}[/math] by [math]\mu(A)=\left\{\begin{array}{lr}
0 & \text{if }A=\emptyset \\
+\infty & \text{otherwise}
\end{array}\right.[/math]
- Note that if we'd chosen a finite and non-zero value instead of [ilmath]+\infty[/ilmath] it would not be a measure[Note 5], as take any non-empty [ilmath]A,B\in\mathcal{R} [/ilmath] with [ilmath]A\cap B=\emptyset[/ilmath], for a measure we would have:
- [ilmath]\mu(A\cup B)=\mu(A)+\mu(B)[/ilmath], which will yield [ilmath]v=2v\implies v=0[/ilmath] contradicting that [ilmath]\mu[/ilmath] maps non-empty sets to finite non-zero values
- Note that if we'd chosen a finite and non-zero value instead of [ilmath]+\infty[/ilmath] it would not be a measure[Note 5], as take any non-empty [ilmath]A,B\in\mathcal{R} [/ilmath] with [ilmath]A\cap B=\emptyset[/ilmath], for a measure we would have:
- [math]\mu:\mathcal{R}\rightarrow\{0\}[/math] by [math]\mu:A\mapsto 0[/math] is the trivial measure.
The message provided is:
See also
Notes
- ↑ Recall [ilmath]\bar{\mathbb{R} }_{\ge0} [/ilmath] is [ilmath]\mathbb{R}_{\ge0}\cup\{+\infty\} [/ilmath]
- ↑ Remember a sigma-algebra is just a sigma-ring containing the entire space.
- ↑ Sometimes stated as monotone (it is monotone in Measures, Integrals and Martingales in fact!)
- ↑ Remember every [ilmath]\sigma[/ilmath]-algebra is a [ilmath]\sigma[/ilmath]-ring, so [ilmath]\mathcal{R} [/ilmath] could just as well be a [ilmath]\sigma[/ilmath]-algebra
- ↑ Unless [ilmath]\mathcal{R} [/ilmath] was a trivial [ilmath]\sigma[/ilmath]-algebra consisting of the empty set and another set.
References
Note: Inline with the Measure theory terminology doctrine the references do not define a measure exactly as such, only an object that fits the place we have named measure. This sounds like a huge discrepancy but as is detailed on that page, it isn't.
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Measure Theory - Paul R. Halmos
- ↑ Measures, Integrals and Martingales - René L. Schilling
- ↑ Measure Theory - Volume 1 - V. I. Bogachev
|