Difference between revisions of "Equivalence of Cauchy sequences/Proof"
(Created page with "<noinclude> ==Statement== {{:Equivalence of Cauchy sequences/Definition}} And that this indeed actually defines an equivalence relation ==Proof== </noinclude> '''Reflexivi...") |
(Added proofs for all 3 statements in a first-year friendly way. Will mark parent page as exemplary/first-year friendly.) |
||
Line 5: | Line 5: | ||
==Proof== | ==Proof== | ||
</noinclude> | </noinclude> | ||
− | '''Reflexivity''' | + | '''[[Reflexive relation|Reflexivity]]''' - We must show that {{MSeq|a_n|post=\sim{{MSeq|a_n|nomath=true}}}} |
− | {{ | + | * Let {{M|\epsilon>0}} be given. |
− | '''Transitivity''' | + | ** Pick {{M|1=N=1}} (any {{M|N\in\mathbb{N} }} will work) |
− | {{ | + | *** Let {{M|n\in\mathbb{N} }} be given |
− | '''Symmetry''' | + | *** There are 2 cases now, either {{M|n>N}} or {{M|n\le N}} |
− | {{ | + | ***# If {{M|n>N}} then by the nature of [[implies]] we require the RHS to be true, we require {{M|d(a_n,a_n)<\epsilon}} to be true. |
+ | ***#* Notice {{M|1=d(a_n,a_n)=0}} by the definition of a [[metric]] | ||
+ | ***#** As {{M|\epsilon>0}} we see {{M|1=d(a_n,a_n)=0<\epsilon}} | ||
+ | ***#* So {{M|d(a_n,a_n)<\epsilon}} is true, as required in this case. | ||
+ | ***# If {{M|n\le N}} by the nature of [[implies]] we don't care about the RHS, it can be either true or false. | ||
+ | ***#* It must be either true or false | ||
+ | ***#* So we're done | ||
+ | This completes the proof that {{MSeq|a_n}} is equivalent to {{MSeq|a_n}} | ||
+ | |||
+ | |||
+ | '''[[Transitive relation|Transitivity]]''' - we must show that {{MSeq|a_n|post=\sim {{MSeq|b_n|nomath=1}}}} and {{MSeq|b_n|post=\sim {{MSeq|c_n|nomath=1}}}} {{M|\implies}} {{MSeq|a_n|post=\sim {{MSeq|c_n|nomath=1}}}} | ||
+ | {{Begin Notebox}} | ||
+ | Workings to determine the gist of the proof | ||
+ | {{Begin Notebox Content}} | ||
+ | Let {{M|\epsilon >0}} be given, we need to show: | ||
+ | * {{M|d(a_n,c_n)<\epsilon}} | ||
+ | But by the [[metric|triangle inequality property of a metric]] we know that: | ||
+ | * {{M|d(a,c)\le d(a,b)+d(b,c)}} for all {{M|b}} in the space. | ||
+ | If we can show that {{M|d(a,b)+d(b,c)<\epsilon}} then we'd be done. | ||
+ | |||
+ | |||
+ | By hypothesis: | ||
+ | * {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]}} and: | ||
+ | * {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(b_n,c_n)<\epsilon]}} | ||
+ | That is we may pick any number we like, as long as it is {{M|>0}} and there is an {{M|N\in\mathbb{N} }} such that for any natural number larger than {{M|N}} the distance between either {{M|a_n}} and {{M|b_n}}, or {{M|b_n}} and {{M|c_n}} is less than that picked number. | ||
+ | |||
+ | |||
+ | Looking at {{M|d(a,b)+d(b,c)<\epsilon}}, we can see that if we have {{M|d(a,b)<\frac{\epsilon}{2} }} and {{M|d(b,c)<\frac{\epsilon}{2} }} then we'd have: | ||
+ | * {{M|1=d(a,b)+d(b,c)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon}} or | ||
+ | * {{M|1=d(a,b)+d(b,c)<\epsilon}} '''{{M|\longleftarrow}}this is exactly what we're looking to do''' | ||
+ | |||
+ | |||
+ | Note that if {{M|\epsilon>0}} then {{M|\frac{\epsilon}{2}>0}} too. | ||
+ | |||
+ | |||
+ | By hypothesis we see for a positive number, {{M|\frac{\epsilon}{2} }} there exists an {{M|N_1}} and {{M|N_2}} such that for all {{M|n\in\mathbb{N} }} if: | ||
+ | * {{M|n>N_1}} then we have {{M|d(a_n,b_n)<\frac{\epsilon}{2} }} and | ||
+ | * {{M|n>N_2}} then we have {{M|d(b_n,c_n)<\frac{\epsilon}{2} }} | ||
+ | |||
+ | |||
+ | If we pick {{M|1=N=\text{max}(N_1,N_2)}} then {{M|\forall n\in\mathbb{N} }} with {{M|n>N}} both {{M|d(a_n,b_n)}} and {{M|d(b_n,c_n)}} are {{M|<\frac{\epsilon}{2} }} | ||
+ | : (as {{M|n>N\implies n>N_1\text{ and }n>N_2}} - this is why we use the largest of {{M|N_1}} and {{M|N_2}}) | ||
+ | |||
+ | Thus we have: | ||
+ | * {{M|1=d(a_n,c_n)\le d(a_n,b_n)+d(b_n,c_n)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon}}, or: | ||
+ | * {{M|1=d(a_n,c_n)<\epsilon}} - as required. | ||
+ | {{End Notebox Content}}{{End Notebox}} | ||
+ | * Let {{M|\epsilon>0}} be given. | ||
+ | ** By hypothesis know both: | ||
+ | **# {{M|\forall\epsilon>0\exists N_1\in\mathbb{N}\forall n\in\mathbb{N}[n>N_1\implies d(a_n,b_n)<\epsilon]}} and: | ||
+ | **# {{M|\forall\epsilon>0\exists N_2\in\mathbb{N}\forall n\in\mathbb{N}[n>N_2\implies d(b_n,c_n)<\epsilon]}} to be true. | ||
+ | ** Note that {{M|\epsilon>0\implies\frac{\epsilon}{2}>0}}, and in both of the hypothesised statements above, it is true ''for all'' {{M|\epsilon>0}} | ||
+ | ** Pick {{M|N_1\in\mathbb{N} }} using the first statement with {{M|\frac{\epsilon}{2} }} as the positive number, now: | ||
+ | *** {{M|\forall n\in\mathbb{N}[n>N_1\implies d(a_n,b_n)<\frac{\epsilon}{2}]}} | ||
+ | ** Pick {{M|N_2\in\mathbb{N} }} using the second statement with {{M|\frac{\epsilon}{2} }} as the positive number, now: | ||
+ | *** {{M|\forall n\in\mathbb{N}[n>N_2\implies d(b_n,c_n)<\frac{\epsilon}{2}]}} | ||
+ | ** Pick for {{M|N\in\mathbb{N} }} the value {{M|1=N=\text{max}(N_1,N_2)}} | ||
+ | *** Now for {{M|n>N}} both {{M|d(a_n,b_n)}} and {{M|d(b_n,c_n)}} are {{M|<\frac{\epsilon}{2} }} | ||
+ | *** Let {{M|n\in\mathbb{N} }} be given, there are 2 cases now, {{M|n>N}} or {{M|n\le N}} | ||
+ | ***# If {{M|n>N}} then by the nature of [[implies]] we must show {{M|d(a_n,c_n)<\epsilon}} to be true | ||
+ | ***#* Notice: {{M|1=d(a_n,c_n)\le d(a_n,b_n)+d(b_n,c_n)}} (by the [[metric|triangle inequality property of a metric]]) and: | ||
+ | ***#** {{M|1=d(a_n,b_n)+d(b_n,c_n)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon}} | ||
+ | ***#* Thus we have {{M|1=d(a_n,c_n)<\epsilon}} - as required | ||
+ | ***# If {{M|n\le N}} by the nature of [[implies]] we don't actually care if {{M|d(a_n,c_n)<\epsilon}} is true or false. | ||
+ | ***#* As it must be either true or false, we are done. | ||
+ | This completes the proof that {{MSeq|a_n|post=\sim {{MSeq|b_n|nomath=1}}}} and {{MSeq|b_n|post=\sim {{MSeq|c_n|nomath=1}}}} {{M|\implies}} {{MSeq|a_n|post=\sim {{MSeq|c_n|nomath=1}}}} | ||
+ | |||
+ | |||
+ | '''[[Symmetric relation|Symmetry]]''' - that is that {{MSeq|a_n|post=\sim {{MSeq|b_n|nomath=1}}}} {{M|\implies}} {{MSeq|b_n|post=\sim {{MSeq|a_n|nomath=1}}}} | ||
+ | {{Begin Notebox}} | ||
+ | Workings to find the gist of the proof | ||
+ | {{Begin Notebox Content}} | ||
+ | Notice we have: | ||
+ | * {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]}} and we want: | ||
+ | * {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(b_n,a_n)<\epsilon]}} | ||
+ | |||
+ | But by the [[metric|symmetric property of a metric]] we see that {{M|1=d(a_n,b_n)=d(b_n,a_n)}} | ||
+ | |||
+ | Thus, if {{M|d(a_n,b_n)<epsilon}} we see {{M|1=d(b_n,a_n)=d(a_n,b_n)<\epsilon}}, so {{M|d(b_n,a_n)<\epsilon}} too! | ||
+ | {{End Notebox Content}}{{End Notebox}} | ||
+ | * Let {{M|\epsilon>0}} be given. | ||
+ | ** By hypothesis we have: | ||
+ | *** {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]}} | ||
+ | ** Choose {{M|N}} to be the {{M|N\in\mathbb{N} }} which exists by hypothesis for our given {{M|\epsilon}} | ||
+ | *** Let {{M|n\in\mathbb{N} }} be given, there are now two cases, {{M|n>N}} and {{M|n\le N}} | ||
+ | ***# if {{M|n>N}} then by the nature of [[implies]] we require {{M|d(b_n,a_n)<\epsilon}} to be true. | ||
+ | ***#* Notice {{M|1=d(b_n,a_n)=d(a_n,b_n)}} [[metric|by the symmetric property of a metric]] and | ||
+ | ***#** By our hypothesis, for our {{M|N}}, {{M|n>N\implies d(a_n,b_n)<\epsilon}} | ||
+ | ***#* Thus {{M|1=d(b_n,a_n)=d(a_n,b_n)<\epsilon}} and | ||
+ | ***#* {{M|d(b_n,a_n)<\epsilon}} as required | ||
+ | ***# if {{M|n\le N}} then by the nature of [[implies]] the RHS can be either true or false, and the implies condition is satisfied. | ||
+ | ***#* As {{M|d(b_n,a_n)<\epsilon}} is a statement that can only be either true or false, we see that this is satisfied | ||
+ | This completes the proof that {{MSeq|a_n|post=\sim {{MSeq|b_n|nomath=1}}}} {{M|\implies}} {{MSeq|b_n|post=\sim {{MSeq|a_n|nomath=1}}}} | ||
<noinclude> | <noinclude> | ||
==References== | ==References== |
Latest revision as of 21:02, 20 April 2016
Statement
Given two Cauchy sequences, [ilmath](a_n)_{n=1}^\infty[/ilmath] and [ilmath](b_n)_{n=1}^\infty[/ilmath] in a metric space [ilmath](X,d)[/ilmath] we define them as equivalent if[1]:
- [math]\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon][/math]
And that this indeed actually defines an equivalence relation
Proof
Reflexivity - We must show that [ilmath] ({ a_n })_{ n = 1 }^{ \infty } \sim ({ a_n })_{ n = 1 }^{ \infty } [/ilmath]
- Let [ilmath]\epsilon>0[/ilmath] be given.
- Pick [ilmath]N=1[/ilmath] (any [ilmath]N\in\mathbb{N} [/ilmath] will work)
- Let [ilmath]n\in\mathbb{N} [/ilmath] be given
- There are 2 cases now, either [ilmath]n>N[/ilmath] or [ilmath]n\le N[/ilmath]
- If [ilmath]n>N[/ilmath] then by the nature of implies we require the RHS to be true, we require [ilmath]d(a_n,a_n)<\epsilon[/ilmath] to be true.
- Notice [ilmath]d(a_n,a_n)=0[/ilmath] by the definition of a metric
- As [ilmath]\epsilon>0[/ilmath] we see [ilmath]d(a_n,a_n)=0<\epsilon[/ilmath]
- So [ilmath]d(a_n,a_n)<\epsilon[/ilmath] is true, as required in this case.
- Notice [ilmath]d(a_n,a_n)=0[/ilmath] by the definition of a metric
- If [ilmath]n\le N[/ilmath] by the nature of implies we don't care about the RHS, it can be either true or false.
- It must be either true or false
- So we're done
- If [ilmath]n>N[/ilmath] then by the nature of implies we require the RHS to be true, we require [ilmath]d(a_n,a_n)<\epsilon[/ilmath] to be true.
- Pick [ilmath]N=1[/ilmath] (any [ilmath]N\in\mathbb{N} [/ilmath] will work)
This completes the proof that [ilmath] ({ a_n })_{ n = 1 }^{ \infty } [/ilmath] is equivalent to [ilmath] ({ a_n })_{ n = 1 }^{ \infty } [/ilmath]
Transitivity - we must show that [ilmath] ({ a_n })_{ n = 1 }^{ \infty } \sim ({ b_n })_{ n = 1 }^{ \infty } [/ilmath] and [ilmath] ({ b_n })_{ n = 1 }^{ \infty } \sim ({ c_n })_{ n = 1 }^{ \infty } [/ilmath] [ilmath]\implies[/ilmath] [ilmath] ({ a_n })_{ n = 1 }^{ \infty } \sim ({ c_n })_{ n = 1 }^{ \infty } [/ilmath]
Workings to determine the gist of the proof
Let [ilmath]\epsilon >0[/ilmath] be given, we need to show:
- [ilmath]d(a_n,c_n)<\epsilon[/ilmath]
But by the triangle inequality property of a metric we know that:
- [ilmath]d(a,c)\le d(a,b)+d(b,c)[/ilmath] for all [ilmath]b[/ilmath] in the space.
If we can show that [ilmath]d(a,b)+d(b,c)<\epsilon[/ilmath] then we'd be done.
By hypothesis:
- [ilmath]\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon][/ilmath] and:
- [ilmath]\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(b_n,c_n)<\epsilon][/ilmath]
That is we may pick any number we like, as long as it is [ilmath]>0[/ilmath] and there is an [ilmath]N\in\mathbb{N} [/ilmath] such that for any natural number larger than [ilmath]N[/ilmath] the distance between either [ilmath]a_n[/ilmath] and [ilmath]b_n[/ilmath], or [ilmath]b_n[/ilmath] and [ilmath]c_n[/ilmath] is less than that picked number.
Looking at [ilmath]d(a,b)+d(b,c)<\epsilon[/ilmath], we can see that if we have [ilmath]d(a,b)<\frac{\epsilon}{2} [/ilmath] and [ilmath]d(b,c)<\frac{\epsilon}{2} [/ilmath] then we'd have:
- [ilmath]d(a,b)+d(b,c)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon[/ilmath] or
- [ilmath]d(a,b)+d(b,c)<\epsilon[/ilmath] [ilmath]\longleftarrow[/ilmath]this is exactly what we're looking to do
Note that if [ilmath]\epsilon>0[/ilmath] then [ilmath]\frac{\epsilon}{2}>0[/ilmath] too.
By hypothesis we see for a positive number, [ilmath]\frac{\epsilon}{2} [/ilmath] there exists an [ilmath]N_1[/ilmath] and [ilmath]N_2[/ilmath] such that for all [ilmath]n\in\mathbb{N} [/ilmath] if:
- [ilmath]n>N_1[/ilmath] then we have [ilmath]d(a_n,b_n)<\frac{\epsilon}{2} [/ilmath] and
- [ilmath]n>N_2[/ilmath] then we have [ilmath]d(b_n,c_n)<\frac{\epsilon}{2} [/ilmath]
If we pick [ilmath]N=\text{max}(N_1,N_2)[/ilmath] then [ilmath]\forall n\in\mathbb{N} [/ilmath] with [ilmath]n>N[/ilmath] both [ilmath]d(a_n,b_n)[/ilmath] and [ilmath]d(b_n,c_n)[/ilmath] are [ilmath]<\frac{\epsilon}{2} [/ilmath]
- (as [ilmath]n>N\implies n>N_1\text{ and }n>N_2[/ilmath] - this is why we use the largest of [ilmath]N_1[/ilmath] and [ilmath]N_2[/ilmath])
Thus we have:
- [ilmath]d(a_n,c_n)\le d(a_n,b_n)+d(b_n,c_n)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon[/ilmath], or:
- [ilmath]d(a_n,c_n)<\epsilon[/ilmath] - as required.
- Let [ilmath]\epsilon>0[/ilmath] be given.
- By hypothesis know both:
- [ilmath]\forall\epsilon>0\exists N_1\in\mathbb{N}\forall n\in\mathbb{N}[n>N_1\implies d(a_n,b_n)<\epsilon][/ilmath] and:
- [ilmath]\forall\epsilon>0\exists N_2\in\mathbb{N}\forall n\in\mathbb{N}[n>N_2\implies d(b_n,c_n)<\epsilon][/ilmath] to be true.
- Note that [ilmath]\epsilon>0\implies\frac{\epsilon}{2}>0[/ilmath], and in both of the hypothesised statements above, it is true for all [ilmath]\epsilon>0[/ilmath]
- Pick [ilmath]N_1\in\mathbb{N} [/ilmath] using the first statement with [ilmath]\frac{\epsilon}{2} [/ilmath] as the positive number, now:
- [ilmath]\forall n\in\mathbb{N}[n>N_1\implies d(a_n,b_n)<\frac{\epsilon}{2}][/ilmath]
- Pick [ilmath]N_2\in\mathbb{N} [/ilmath] using the second statement with [ilmath]\frac{\epsilon}{2} [/ilmath] as the positive number, now:
- [ilmath]\forall n\in\mathbb{N}[n>N_2\implies d(b_n,c_n)<\frac{\epsilon}{2}][/ilmath]
- Pick for [ilmath]N\in\mathbb{N} [/ilmath] the value [ilmath]N=\text{max}(N_1,N_2)[/ilmath]
- Now for [ilmath]n>N[/ilmath] both [ilmath]d(a_n,b_n)[/ilmath] and [ilmath]d(b_n,c_n)[/ilmath] are [ilmath]<\frac{\epsilon}{2} [/ilmath]
- Let [ilmath]n\in\mathbb{N} [/ilmath] be given, there are 2 cases now, [ilmath]n>N[/ilmath] or [ilmath]n\le N[/ilmath]
- If [ilmath]n>N[/ilmath] then by the nature of implies we must show [ilmath]d(a_n,c_n)<\epsilon[/ilmath] to be true
- Notice: [ilmath]d(a_n,c_n)\le d(a_n,b_n)+d(b_n,c_n)[/ilmath] (by the triangle inequality property of a metric) and:
- [ilmath]d(a_n,b_n)+d(b_n,c_n)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon[/ilmath]
- Thus we have [ilmath]d(a_n,c_n)<\epsilon[/ilmath] - as required
- Notice: [ilmath]d(a_n,c_n)\le d(a_n,b_n)+d(b_n,c_n)[/ilmath] (by the triangle inequality property of a metric) and:
- If [ilmath]n\le N[/ilmath] by the nature of implies we don't actually care if [ilmath]d(a_n,c_n)<\epsilon[/ilmath] is true or false.
- As it must be either true or false, we are done.
- If [ilmath]n>N[/ilmath] then by the nature of implies we must show [ilmath]d(a_n,c_n)<\epsilon[/ilmath] to be true
- By hypothesis know both:
This completes the proof that [ilmath] ({ a_n })_{ n = 1 }^{ \infty } \sim ({ b_n })_{ n = 1 }^{ \infty } [/ilmath] and [ilmath] ({ b_n })_{ n = 1 }^{ \infty } \sim ({ c_n })_{ n = 1 }^{ \infty } [/ilmath] [ilmath]\implies[/ilmath] [ilmath] ({ a_n })_{ n = 1 }^{ \infty } \sim ({ c_n })_{ n = 1 }^{ \infty } [/ilmath]
Symmetry - that is that [ilmath] ({ a_n })_{ n = 1 }^{ \infty } \sim ({ b_n })_{ n = 1 }^{ \infty } [/ilmath] [ilmath]\implies[/ilmath] [ilmath] ({ b_n })_{ n = 1 }^{ \infty } \sim ({ a_n })_{ n = 1 }^{ \infty } [/ilmath]
Workings to find the gist of the proof
Notice we have:
- [ilmath]\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon][/ilmath] and we want:
- [ilmath]\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(b_n,a_n)<\epsilon][/ilmath]
But by the symmetric property of a metric we see that [ilmath]d(a_n,b_n)=d(b_n,a_n)[/ilmath]
Thus, if [ilmath]d(a_n,b_n)<epsilon[/ilmath] we see [ilmath]d(b_n,a_n)=d(a_n,b_n)<\epsilon[/ilmath], so [ilmath]d(b_n,a_n)<\epsilon[/ilmath] too!
- Let [ilmath]\epsilon>0[/ilmath] be given.
- By hypothesis we have:
- [ilmath]\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon][/ilmath]
- Choose [ilmath]N[/ilmath] to be the [ilmath]N\in\mathbb{N} [/ilmath] which exists by hypothesis for our given [ilmath]\epsilon[/ilmath]
- Let [ilmath]n\in\mathbb{N} [/ilmath] be given, there are now two cases, [ilmath]n>N[/ilmath] and [ilmath]n\le N[/ilmath]
- if [ilmath]n>N[/ilmath] then by the nature of implies we require [ilmath]d(b_n,a_n)<\epsilon[/ilmath] to be true.
- Notice [ilmath]d(b_n,a_n)=d(a_n,b_n)[/ilmath] by the symmetric property of a metric and
- By our hypothesis, for our [ilmath]N[/ilmath], [ilmath]n>N\implies d(a_n,b_n)<\epsilon[/ilmath]
- Thus [ilmath]d(b_n,a_n)=d(a_n,b_n)<\epsilon[/ilmath] and
- [ilmath]d(b_n,a_n)<\epsilon[/ilmath] as required
- Notice [ilmath]d(b_n,a_n)=d(a_n,b_n)[/ilmath] by the symmetric property of a metric and
- if [ilmath]n\le N[/ilmath] then by the nature of implies the RHS can be either true or false, and the implies condition is satisfied.
- As [ilmath]d(b_n,a_n)<\epsilon[/ilmath] is a statement that can only be either true or false, we see that this is satisfied
- if [ilmath]n>N[/ilmath] then by the nature of implies we require [ilmath]d(b_n,a_n)<\epsilon[/ilmath] to be true.
- Let [ilmath]n\in\mathbb{N} [/ilmath] be given, there are now two cases, [ilmath]n>N[/ilmath] and [ilmath]n\le N[/ilmath]
- By hypothesis we have:
This completes the proof that [ilmath] ({ a_n })_{ n = 1 }^{ \infty } \sim ({ b_n })_{ n = 1 }^{ \infty } [/ilmath] [ilmath]\implies[/ilmath] [ilmath] ({ b_n })_{ n = 1 }^{ \infty } \sim ({ a_n })_{ n = 1 }^{ \infty } [/ilmath]
References
- Theorems
- Theorems, lemmas and corollaries
- Metric Space Theorems
- Metric Space Theorems, lemmas and corollaries
- Metric Space
- Topology Theorems
- Topology Theorems, lemmas and corollaries
- Topology
- Functional Analysis Theorems
- Functional Analysis Theorems, lemmas and corollaries
- Functional Analysis
- Analysis Theorems
- Analysis Theorems, lemmas and corollaries
- Analysis