Difference between revisions of "Deformation retraction/Definition"

From Maths
Jump to: navigation, search
(Saving work)
 
m
Line 2: Line 2:
 
==Definition==
 
==Definition==
 
</noinclude>
 
</noinclude>
A [[subspace (topology)|subspace]], {{M|A}}, of a [[topological space]] {{Top.|X|J}} is called a ''deformation retract'' of {{M|X}}, if there exists a [[retraction]]{{rAITATJJR}}, {{M|r:X\rightarrow A}}, with the additional property:
+
A [[subspace (topology)|subspace]], {{M|A}}, of a [[topological space]] {{Top.|X|J}} is called a ''deformation retract'' of {{M|X}}, if there exists a [[retraction]]{{rAITATJJR}}{{rITTMJML}}, {{M|r:X\rightarrow A}}, with the additional property:
* {{M|i_A\circ r\simeq\text{Id}_X}}<ref name="AITATJJR"/>
+
* {{M|i_A\circ r\simeq\text{Id}_X}}<ref name="AITATJJR"/><ref name="ITTMJML"/> (That {{M|i_A\circ r}} and {{M|\text{Id}_X}} are [[homotopic maps]])
 +
*: Here {{M|i_A:A\hookrightarrow X}} is the [[inclusion map]] and {{M|\text{Id}_X}} the [[identity map]] of {{M|X}}.
 +
Recall that a [[retraction]], {{M|r:X\rightarrow A}} is simply a continuous map where {{M|1=r\vert_A=\text{Id}_A}} (the [[restriction]] of {{M|r}} to {{M|A}}). This is equivalent to the requirement: {{M|1=r\circ i_A=\text{Id}_A}}.
 
{{#if:{{{hideCaution|}}}||
 
{{#if:{{{hideCaution|}}}||
 
: {{Caution|Be sure to see the '''''[[Deformation retraction#Warnings on terminology|warnings on terminology]]'''''}}<!--
 
: {{Caution|Be sure to see the '''''[[Deformation retraction#Warnings on terminology|warnings on terminology]]'''''}}<!--
 
-->}}<noinclude>
 
-->}}<noinclude>
 
==References==
 
==References==
 +
{{Todo|Mention something about how we must have a [[homotopy equivalence]] as a result. If {{M|1=r\circ i_A=\text{Id}_A}} then {{M|r\circ i_A}} and {{M|\text{Id}_X}} are trivially homotopic. As {{M|i_A\circ r\simeq\text{Id}_A}} we have the definition of a [[homotopy equivalence]]}}
 
<references/>
 
<references/>
 
{{Definition|Topology|Homotopy Theory|Algebraic Topology}}
 
{{Definition|Topology|Homotopy Theory|Algebraic Topology}}
 
</noinclude>
 
</noinclude>

Revision as of 20:09, 12 May 2016

Definition

A subspace, [ilmath]A[/ilmath], of a topological space [ilmath](X,\mathcal{ J })[/ilmath] is called a deformation retract of [ilmath]X[/ilmath], if there exists a retraction[1][2], [ilmath]r:X\rightarrow A[/ilmath], with the additional property:

  • [ilmath]i_A\circ r\simeq\text{Id}_X[/ilmath][1][2] (That [ilmath]i_A\circ r[/ilmath] and [ilmath]\text{Id}_X[/ilmath] are homotopic maps)
    Here [ilmath]i_A:A\hookrightarrow X[/ilmath] is the inclusion map and [ilmath]\text{Id}_X[/ilmath] the identity map of [ilmath]X[/ilmath].

Recall that a retraction, [ilmath]r:X\rightarrow A[/ilmath] is simply a continuous map where [ilmath]r\vert_A=\text{Id}_A[/ilmath] (the restriction of [ilmath]r[/ilmath] to [ilmath]A[/ilmath]). This is equivalent to the requirement: [ilmath]r\circ i_A=\text{Id}_A[/ilmath].

Caution:Be sure to see the warnings on terminology

References


TODO: Mention something about how we must have a homotopy equivalence as a result. If [ilmath]r\circ i_A=\text{Id}_A[/ilmath] then [ilmath]r\circ i_A[/ilmath] and [ilmath]\text{Id}_X[/ilmath] are trivially homotopic. As [ilmath]i_A\circ r\simeq\text{Id}_A[/ilmath] we have the definition of a homotopy equivalence


  1. 1.0 1.1 An Introduction to Algebraic Topology - Joseph J. Rotman
  2. 2.0 2.1 Introduction to Topological Manifolds - John M. Lee