Difference between revisions of "Disjoint union topology"
From Maths
m |
m (Alec moved page Coproduct topology to Disjoint union topology: Silly name change TBH. Leaving redirect behind) |
(No difference)
|
Revision as of 18:33, 24 September 2016
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Grade A until it is more presentable.
Contents
Definition
Suppose [ilmath]\big((X_\alpha,\mathcal{J}_\alpha)\big)_{\alpha\in I} [/ilmath] be an indexed family of topological spaces that are non-empty[1], the disjoint union topology is a topological space:
- with underlying set [ilmath]\coprod_{\alpha\in I}X_\alpha[/ilmath], this is the disjoint union of sets, recall [ilmath](x,\beta)\in\coprod_{\alpha\in I}X_\alpha\iff \beta\in I\wedge x\in X_\beta[/ilmath] and
- The topology where [ilmath]U\in\mathcal{P}(\coprod_{\alpha\in I}X_\alpha)[/ilmath] is considered open if and only if [ilmath]\forall \alpha\in I[X_\alpha\cap U\in\mathcal{J}_\alpha][/ilmath][Note 1] - be sure to notice the abuse of notation going on here.
TODO: Flesh out notes, mention subspace [ilmath]X_\alpha\times\{\alpha\} [/ilmath] and such
Claim 1: this is indeed a topology
Proof of claims
(Unknown grade)
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
The message provided is:
Actually surprisingly easy to prove, done on paper. page 1, 7/8/2016, Intro to top manifolds notes. Filed
Notes
- ↑ There's a very nasty abuse of notation going on here. First, note a set [ilmath]U[/ilmath] is going to be a bunch of points of the form [ilmath](x,\gamma)[/ilmath] for various [ilmath]x[/ilmath]s and [ilmath]\gamma[/ilmath]s ([ilmath]\in I[/ilmath]). There is no "canonical projection" FROM the product to the spaces, as this would not be a function!
References
|
TODO: Investigate the need to be non-empty, I suspect it's because the union "collapses" in this case, and the space wouldn't be a part of union