Difference between revisions of "Notes:Homology"

From Maths
Jump to: navigation, search
(Computing the homology groups:: Buggered up computation, left it for now, added 1st homology group)
(FOUND MY ERROR - no wonder it made no sense!)
Line 30: Line 30:
 
*# {{M|1=\partial_1(d)=x-z}} also
 
*# {{M|1=\partial_1(d)=x-z}} also
 
* We extend this to a [[group homomorphism]] by defining:
 
* We extend this to a [[group homomorphism]] by defining:
** {{M|1=\begin{array}{rcl}\partial_1(\alpha a+\beta b+\gamma c+\delta d)&:=&\alpha\partial_1(a)+\beta\partial_1(b)+\gamma\partial_1(c)+\delta\partial_1(d)\\ & =&  \alpha(y-x)+\beta(z-y)+(\gamma+\delta)(x-z)\\<!--
+
** <span style="font-size:0.8em;">{{M|1=\begin{array}{rcl}\partial_1(\alpha a+\beta b+\gamma c+\delta d)&:=&\alpha\partial_1(a)+\beta\partial_1(b)+\gamma\partial_1(c)+\delta\partial_1(d)\\ & =&  \alpha(y-x)+\beta(z-y)+(\gamma+\delta)(x-z)\\<!--
-->& = &(-\alpha+\gamma+\delta)x+(\alpha-\beta)y+(-\gamma-\delta)z\end{array} }}, we may write: <span style="font-size:0.8em;">{{M|1=\begin{pmatrix}x\\y\\z\end{pmatrix}=\alpha\left(\begin{array}{c}-1\\ 1 \\ 0\end{array}\right)+\beta\begin{pmatrix}0\\-1\\1\end{pmatrix}+\gamma\begin{pmatrix}0\\-1\\-1\end{pmatrix}+\delta\begin{pmatrix}0\\-1\\-1\end{pmatrix}=\begin{pmatrix}-1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \\ 0 & 1 & -1 & -1\end{pmatrix}\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix} }}</span>
+
-->& = &(-\alpha+\gamma+\delta)x+(\alpha-\beta)y+(\beta-\gamma-\delta)z\end{array} }}</span>, we may write: <span style="font-size:0.8em;">{{M|1=\begin{pmatrix}x\\y\\z\end{pmatrix}=\alpha\left(\begin{array}{c}-1\\ 1 \\ 0\end{array}\right)+\beta\begin{pmatrix}0\\-1\\1\end{pmatrix}+\gamma\begin{pmatrix}1\\0\\-1\end{pmatrix}+\delta\begin{pmatrix}1\\0\\-1\end{pmatrix}=\begin{pmatrix}-1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1\end{pmatrix}\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix} }}</span>
 
** Recall also the [[rank plus nullity theorem]]:
 
** Recall also the [[rank plus nullity theorem]]:
 
*** For {{M|f\in\mathcal{L}(V,W)}} we have {{M|1=\text{Dim}(\text{Ker}(f))+\text{Dim}(\text{Im}(f))=\text{Dim}(V)}}
 
*** For {{M|f\in\mathcal{L}(V,W)}} we have {{M|1=\text{Dim}(\text{Ker}(f))+\text{Dim}(\text{Im}(f))=\text{Dim}(V)}}
Line 42: Line 42:
 
*#* It is clear from the [[rank plus nullity theorem]] mentioned above that we should have {{M|1=\text{Dim}(\text{Ker}(\partial_1))+\text{Dim}(\text{Im}(\partial_1))=4}} and we'll need to compute the kernel of {{M|\partial_1}} for {{M|H_1}} anyway.
 
*#* It is clear from the [[rank plus nullity theorem]] mentioned above that we should have {{M|1=\text{Dim}(\text{Ker}(\partial_1))+\text{Dim}(\text{Im}(\partial_1))=4}} and we'll need to compute the kernel of {{M|\partial_1}} for {{M|H_1}} anyway.
 
*#** See ''computing the kernel of {{M|\partial_1}}'' below
 
*#** See ''computing the kernel of {{M|\partial_1}}'' below
 +
*#** The dimension of the kernel is {{M|2}} so the dimension of the image is {{M|2}} also!
 +
*#** {{M|1=H_0=\langle x,y,z\rangle/\langle \text{hmm.... thing of dimension 2...}\rangle\cong\mathbb{Z}\ (?) }}
 
* {{M|1=H_1:=Z_1/B_1:=\text{Ker}(\partial_1)/\text{Im}(\partial 2)}}
 
* {{M|1=H_1:=Z_1/B_1:=\text{Ker}(\partial_1)/\text{Im}(\partial 2)}}
 
*# Computing {{M|\text{Ker}(\partial_1)}} has already been done below
 
*# Computing {{M|\text{Ker}(\partial_1)}} has already been done below
 
*# Computing {{M|\text{Im}(\partial_2)}} is easy, it's {{M|0}} - the [[trivial group]]
 
*# Computing {{M|\text{Im}(\partial_2)}} is easy, it's {{M|0}} - the [[trivial group]]
 
** Thus:
 
** Thus:
*** {{M|1=H_1\cong\text{Ker}(\partial_1)}}
+
*** {{M|1=H_1\cong\text{Ker}(\partial_1)=\langle a+b+c,a+b+d\rangle\cong\mathbb{Z}^2}}
  
 
===Computing the kernel of {{M|\partial_1}}===
 
===Computing the kernel of {{M|\partial_1}}===
 
To do this we wish to solve:
 
To do this we wish to solve:
* {{M|1=\begin{pmatrix}-1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \\ 0 & 1 & -1 & -1\end{pmatrix}\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix} }}, which basically amounts to [[rrefing]] {{M|1=\begin{pmatrix}-1 & 0 & 0 & 0 & 0\\ 1 & -1 & -1 & -1 & 0\\ 0 & 1 & -1 & -1 & 0\end{pmatrix} }} giving us {{M|1=\begin{pmatrix}1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 &0\end{pmatrix} }}
+
* {{M|1=\begin{pmatrix}-1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1\end{pmatrix}\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix} }}, which basically amounts to [[rrefing]] {{M|1=\begin{pmatrix}-1 & 0 & 1 & 1 & 0\\ 1 & -1 & 0 & 0 & 0\\ 0 & 1 & -1 & -1 & 0\end{pmatrix} }} giving us {{M|1=\begin{pmatrix}1 & 0 & -1 & -1 & 0\\ 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 &0\end{pmatrix} }}
** Exactly: {{M|1=\alpha=0}}, {{M|1=\beta=0}} and {{M|1=\gamma=-\delta}}
+
** Yielding: {{M|1=\alpha=\gamma+\delta}} and {{M|1=\beta=\gamma+\delta}}. Let {{M|1=\gamma:=s}} and {{M|\delta:=t}} then:
 +
*** {{M|1=\alpha=s+t}} and {{M|1=\beta=s+t}}, vectorially:
 +
*** If {{M|1=\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}=s\begin{pmatrix}1\\1\\1\\0 \end{pmatrix}+t\begin{pmatrix}1\\1\\0\\1 \end{pmatrix} }} then {{M|\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}\in\text{Ker}(\partial_1)}}
 +
**** This makes perfect sense, it means (''informally'') {{M|s}} times through {{M|(a\rightarrow b\rightarrow c)}} and {{M|t}} times through {{M|a\rightarrow b\rightarrow d}}, which goes {{M|s+t}} times through both {{M|a}} and {{M|b}} all together!
 +
*** Clearly the dimension is 2.
 +
==Dealing with generated spaces==
 +
[[File:NonSurjectiveInvertable"Lin"Map.JPG|thumb|Here we see the space {{M|\langle (1,2),(2,1)\rangle}} "inside" {{M|\mathbb{Z}^2}}, clearly it is both not, and sort of is "isomorphic" to {{M|\mathbb{Z}^2}}. It isn't as there are holes, it is though as it ''itself'' is a space of dimension 2...]]
 +
 
 +
I don't like being so informal, hence "rings and modules"

Revision as of 18:59, 11 October 2016

Definitions

  1. Boundary operator: [ilmath]\partial_n:C_n\rightarrow C_{n-1} [/ilmath] given by [ilmath]\partial_n:[a_0,\ldots a_n]\mapsto\sum^n_{i=0}(-1)^i[a_0,\ldots,\hat{a_i},\ldots,a_n][/ilmath]
  2. [ilmath]\mathbf{n} [/ilmath]-cycles: [ilmath]Z_n[/ilmath] (a cycle is defined to have boundary 0, thus [ilmath]Z_n=\text{Ker}(\partial_n)[/ilmath] - todo - discussion)
  3. [ilmath]\mathbf{n} [/ilmath]-boundaries: [ilmath]B_n[/ilmath] (the image of [ilmath]\partial_{n+1} [/ilmath] - all boundaries)
    • Claim: [ilmath]B_n\le Z_n[/ilmath] (that is: [ilmath]B_n[/ilmath] is a subgroup of [ilmath]Z_n[/ilmath])
  4. [ilmath]\mathbf{n} [/ilmath]th homology group: [ilmath]H_n:=Z_n/B_n[/ilmath]

Examples 1: [ilmath]G_1[/ilmath]

[ilmath]\xymatrix{ & & x \ar@/_.25pc/[dll]_a \\ y \ar@/_.25pc/[drr]_b \\ & & z \ar@/_.5pc/[uu]^c \ar@/_2pc/[uu]_d }[/ilmath]
Our first example, [ilmath]G_1[/ilmath]

Chain complex: [ilmath]\xymatrix{ 0 \ar[r]^{\partial_2} & C_1 \ar[r]^{\partial_1} \ar@2{->}[d] & C_0 \ar[r]^{\partial_0=0} \ar@2{->}[d] & 0 \\ & {\langle a,b,c,d\rangle\cong\mathbb{Z}^4} & {\langle x,y,z\rangle\cong\mathbb{Z}^3} }[/ilmath]
[ilmath]\partial_1:C_1\rightarrow C_0[/ilmath] morphism:

  • We have:
    1. [ilmath]\partial_1(a)= y-x[/ilmath],
    2. [ilmath]\partial_1(b)= z-y[/ilmath],
    3. [ilmath]\partial_1(c)= x-z[/ilmath] and
    4. [ilmath]\partial_1(d)=x-z[/ilmath] also
  • We extend this to a group homomorphism by defining:
    • [ilmath]\begin{array}{rcl}\partial_1(\alpha a+\beta b+\gamma c+\delta d)&:=&\alpha\partial_1(a)+\beta\partial_1(b)+\gamma\partial_1(c)+\delta\partial_1(d)\\ & =& \alpha(y-x)+\beta(z-y)+(\gamma+\delta)(x-z)\\& = &(-\alpha+\gamma+\delta)x+(\alpha-\beta)y+(\beta-\gamma-\delta)z\end{array}[/ilmath], we may write: [ilmath]\begin{pmatrix}x\\y\\z\end{pmatrix}=\alpha\left(\begin{array}{c}-1\\ 1 \\ 0\end{array}\right)+\beta\begin{pmatrix}0\\-1\\1\end{pmatrix}+\gamma\begin{pmatrix}1\\0\\-1\end{pmatrix}+\delta\begin{pmatrix}1\\0\\-1\end{pmatrix}=\begin{pmatrix}-1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1\end{pmatrix}\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}[/ilmath]
    • Recall also the rank plus nullity theorem:
      • For [ilmath]f\in\mathcal{L}(V,W)[/ilmath] we have [ilmath]\text{Dim}(\text{Ker}(f))+\text{Dim}(\text{Im}(f))=\text{Dim}(V)[/ilmath]

Computing the homology groups:

  • [ilmath]H_0:=Z_0/B_0=\text{Ker}(\partial_0)/\text{Im}(\partial_1)[/ilmath]
    1. Computing [ilmath]\text{Ker}(\partial_0)[/ilmath] (result: [ilmath]\text{Ker}(\partial_0)=C_0[/ilmath])
      • By definition, [ilmath]\partial_0:[a_0]\mapsto 0[/ilmath], so everything in the domain of [ilmath]\partial_0[/ilmath] is in the kernel!
      • Thus [ilmath]Z_0=C_0[/ilmath]
    2. Computing [ilmath]\text{Im}(\partial_1)[/ilmath]
      • It is clear from the rank plus nullity theorem mentioned above that we should have [ilmath]\text{Dim}(\text{Ker}(\partial_1))+\text{Dim}(\text{Im}(\partial_1))=4[/ilmath] and we'll need to compute the kernel of [ilmath]\partial_1[/ilmath] for [ilmath]H_1[/ilmath] anyway.
        • See computing the kernel of [ilmath]\partial_1[/ilmath] below
        • The dimension of the kernel is [ilmath]2[/ilmath] so the dimension of the image is [ilmath]2[/ilmath] also!
        • [ilmath]H_0=\langle x,y,z\rangle/\langle \text{hmm.... thing of dimension 2...}\rangle\cong\mathbb{Z}\ (?)[/ilmath]
  • [ilmath]H_1:=Z_1/B_1:=\text{Ker}(\partial_1)/\text{Im}(\partial 2)[/ilmath]
    1. Computing [ilmath]\text{Ker}(\partial_1)[/ilmath] has already been done below
    2. Computing [ilmath]\text{Im}(\partial_2)[/ilmath] is easy, it's [ilmath]0[/ilmath] - the trivial group
    • Thus:
      • [ilmath]H_1\cong\text{Ker}(\partial_1)=\langle a+b+c,a+b+d\rangle\cong\mathbb{Z}^2[/ilmath]

Computing the kernel of [ilmath]\partial_1[/ilmath]

To do this we wish to solve:

  • [ilmath]\begin{pmatrix}-1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1\end{pmatrix}\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}[/ilmath], which basically amounts to rrefing [ilmath]\begin{pmatrix}-1 & 0 & 1 & 1 & 0\\ 1 & -1 & 0 & 0 & 0\\ 0 & 1 & -1 & -1 & 0\end{pmatrix}[/ilmath] giving us [ilmath]\begin{pmatrix}1 & 0 & -1 & -1 & 0\\ 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 &0\end{pmatrix}[/ilmath]
    • Yielding: [ilmath]\alpha=\gamma+\delta[/ilmath] and [ilmath]\beta=\gamma+\delta[/ilmath]. Let [ilmath]\gamma:=s[/ilmath] and then:
      • [ilmath]\alpha=s+t[/ilmath] and [ilmath]\beta=s+t[/ilmath], vectorially:
      • If [ilmath]\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}=s\begin{pmatrix}1\\1\\1\\0 \end{pmatrix}+t\begin{pmatrix}1\\1\\0\\1 \end{pmatrix}[/ilmath] then [ilmath]\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}\in\text{Ker}(\partial_1)[/ilmath]
        • This makes perfect sense, it means (informally) [ilmath]s[/ilmath] times through [ilmath](a\rightarrow b\rightarrow c)[/ilmath] and [ilmath]t[/ilmath] times through [ilmath]a\rightarrow b\rightarrow d[/ilmath], which goes [ilmath]s+t[/ilmath] times through both [ilmath]a[/ilmath] and [ilmath]b[/ilmath] all together!
      • Clearly the dimension is 2.

Dealing with generated spaces

Here we see the space [ilmath]\langle (1,2),(2,1)\rangle[/ilmath] "inside" [ilmath]\mathbb{Z}^2[/ilmath], clearly it is both not, and sort of is "isomorphic" to [ilmath]\mathbb{Z}^2[/ilmath]. It isn't as there are holes, it is though as it itself is a space of dimension 2...

I don't like being so informal, hence "rings and modules"