Difference between revisions of "Measure"

From Maths
Jump to: navigation, search
m
m
Line 1: Line 1:
Not to be confused with [[Pre-measure]]
+
{{Extra Maths}}Not to be confused with [[Pre-measure]]
  
  
Line 22: Line 22:
 
|-
 
|-
 
| Finitely additive
 
| Finitely additive
| <math>\mu(\bigcup^n_{i=1}A_i)=\sum^n_{i=1}\mu(A_i)</math>
+
| <math>\mu(\bigudot^n_{i=1}A_i)=\sum^n_{i=1}\mu(A_i)</math>
| <math>\mu_0(\bigcup^n_{i=1}A_i)=\sum^n_{i=1}\mu_0(A_i)</math>
+
| <math>\mu_0(\bigudot^n_{i=1}A_i)=\sum^n_{i=1}\mu_0(A_i)</math>
 
|-
 
|-
 
| Countably additive
 
| Countably additive
| <math>\mu(\bigcup^\infty_{n=1}A_n)=\sum^\infty_{n=1}\mu(A_n)</math>
+
| <math>\mu(\bigudot^\infty_{n=1}A_n)=\sum^\infty_{n=1}\mu(A_n)</math>
| If <math>\bigcup^\infty_{n=1}A_n\in R</math> then <math>\mu_0(\bigcup^\infty_{n=1}A_n)=\sum^\infty_{n=1}\mu_0(A_n)</math>
+
| If <math>\bigudot^\infty_{n=1}A_n\in R</math> then <math>\mu_0(\bigudot^\infty_{n=1}A_n)=\sum^\infty_{n=1}\mu_0(A_n)</math>
 
|}
 
|}
  
 
{{Definition|Measure Theory}}
 
{{Definition|Measure Theory}}

Revision as of 22:32, 13 March 2015

[math]\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }[/math][math]\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}[/math][math]\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }[/math]Not to be confused with Pre-measure


Definition

A [ilmath]\sigma[/ilmath]-ring [ilmath]\mathcal{A} [/ilmath] and a countably additive, extended real valued. non-negative set function [math]\mu:\mathcal{A}\rightarrow[0,\infty][/math] is a measure.

Contrast with pre-measure

Note: the family [math]A_n[/math] must be pairwise disjoint

Property Measure Pre-measure
[math]\mu:\mathcal{A}\rightarrow[0,\infty][/math] [math]\mu_0:R\rightarrow[0,\infty][/math]
[math]\mu(\emptyset)=0[/math] [math]\mu_0(\emptyset)=0[/math]
Finitely additive [math]\mu(\bigudot^n_{i=1}A_i)=\sum^n_{i=1}\mu(A_i)[/math] [math]\mu_0(\bigudot^n_{i=1}A_i)=\sum^n_{i=1}\mu_0(A_i)[/math]
Countably additive [math]\mu(\bigudot^\infty_{n=1}A_n)=\sum^\infty_{n=1}\mu(A_n)[/math] If [math]\bigudot^\infty_{n=1}A_n\in R[/math] then [math]\mu_0(\bigudot^\infty_{n=1}A_n)=\sum^\infty_{n=1}\mu_0(A_n)[/math]