Difference between revisions of "Module"

From Maths
Jump to: navigation, search
m
m (Definition: Typo)
 
Line 4: Line 4:
 
Let {{M|(R,+,*,0)}}<ref group="Note">Or {{M|(R,+,*,0,1)}} if the ring has unity. Standard notation</ref> be a [[ring]] - not necessarily with [[ring with unity|unity]] - then a "''left'' {{M|R}}-module"{{rAAPAG}} is:
 
Let {{M|(R,+,*,0)}}<ref group="Note">Or {{M|(R,+,*,0,1)}} if the ring has unity. Standard notation</ref> be a [[ring]] - not necessarily with [[ring with unity|unity]] - then a "''left'' {{M|R}}-module"{{rAAPAG}} is:
 
* An [[Abelian group]], {{M|(M,\oplus)}} together with a
 
* An [[Abelian group]], {{M|(M,\oplus)}} together with a
* left action, {{M|[:R\times M\rightarrow M]}} given by {{M|[:(r,x)\mapsto rx]}} of {{M|R}} on {{M|MM}}, called the "left {{M|R}}-module structure" on {{M|M}}
+
* left action, {{M|[:R\times M\rightarrow M]}} given by {{M|[:(r,x)\mapsto rx]}} of {{M|R}} on {{M|M}}, called the "left {{M|R}}-module structure" on {{M|M}}
 
such that:
 
such that:
 
# {{M|1=\forall r,s\in R,\forall x\in M[r(sx)=(rs)x]}},
 
# {{M|1=\forall r,s\in R,\forall x\in M[r(sx)=(rs)x]}},
Line 14: Line 14:
 
</ol>
 
</ol>
 
The notation {{M|{}_RM}} generally indicates that {{M|M}} is a ''left'' {{M|R}}-module
 
The notation {{M|{}_RM}} generally indicates that {{M|M}} is a ''left'' {{M|R}}-module
 +
 
==See next==
 
==See next==
 
* [[Direct product of modules]] - an instance of a {{link|product|category theory}}
 
* [[Direct product of modules]] - an instance of a {{link|product|category theory}}

Latest revision as of 22:40, 19 October 2016

Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Important for the Rings and Modules. Demote when fleshed out

Definition

Let [ilmath](R,+,*,0)[/ilmath][Note 1] be a ring - not necessarily with unity - then a "left [ilmath]R[/ilmath]-module"[1] is:

  • An Abelian group, [ilmath](M,\oplus)[/ilmath] together with a
  • left action, [ilmath][:R\times M\rightarrow M][/ilmath] given by [ilmath][:(r,x)\mapsto rx][/ilmath] of [ilmath]R[/ilmath] on [ilmath]M[/ilmath], called the "left [ilmath]R[/ilmath]-module structure" on [ilmath]M[/ilmath]

such that:

  1. [ilmath]\forall r,s\in R,\forall x\in M[r(sx)=(rs)x][/ilmath],
  2. [ilmath]\forall r,s\in R,\forall x\in M[(r+s)x=rx+sx][/ilmath] and
  3. [ilmath]\forall r\in R,\forall x,y\in M[r(x+y)=rx+ry][/ilmath]

Additionally, if [ilmath]R[/ilmath] is a u-ring[Note 2] then a left [ilmath]R[/ilmath]-module is unital when[1]:

  1. [ilmath]\forall x\in M[1_Rx=x][/ilmath]

The notation [ilmath]{}_RM[/ilmath] generally indicates that [ilmath]M[/ilmath] is a left [ilmath]R[/ilmath]-module

See next

Notes

  1. Or [ilmath](R,+,*,0,1)[/ilmath] if the ring has unity. Standard notation
  2. has unity, a multiplicative identity denoted [ilmath]1[/ilmath] or [ilmath]1_R[/ilmath]

References

  1. 1.0 1.1 Abstract Algebra - Pierre Antoine Grillet