Difference between revisions of "Notes:Algebraic Topology - Hatcher/Chapter 0"
From Maths
(Saving work, not much to report) |
(No difference)
|
Latest revision as of 20:57, 1 November 2016
Book notes
Deformation retraction
A deformation retraction of a topological space [ilmath](X,\mathcal{ J })[/ilmath] onto a subspace [ilmath](A,\mathcal{J}_A)[/ilmath] is a family of maps:
- For all [ilmath]t\in I[/ilmath]:
- [ilmath]f_t:X\rightarrow X[/ilmath][Note 1] such that
- [ilmath]f_0=\text{Id}_X[/ilmath], the identity map,
- [ilmath]f_1(X)=A[/ilmath] and
- [ilmath]f_t\big\vert_A=\text{Id}_A[/ilmath]
- [ilmath]f_t:X\rightarrow X[/ilmath][Note 1] such that
- The family [ilmath]\{f_t\}_{t\in I} [/ilmath] should be continuous in the sense that the associated map:
- [ilmath](:X\times I\rightarrow X)[/ilmath] given by [ilmath](:(x,t)\mapsto f_t(x))[/ilmath] is continuous.
Notes
- ↑ Here [ilmath]I:=[0,1]\subset\mathbb{R}[/ilmath] of course