Difference between revisions of "Homotopy invariance of path concatenation"
From Maths
(Created page with "{{Stub page|grade=A*|msg=Really not in the mood for this, done it anyway, check first and flesh out}} __TOC__ ==Statement== File:HomotopyInvarianceOfPathConcatenation.JPG|th...") |
(Fleshed out statement) |
||
Line 3: | Line 3: | ||
==Statement== | ==Statement== | ||
[[File:HomotopyInvarianceOfPathConcatenation.JPG|thumb|{{XXX|This caption}}]] | [[File:HomotopyInvarianceOfPathConcatenation.JPG|thumb|{{XXX|This caption}}]] | ||
− | Let {{M|p_1,p_2,p_1',p_2'\in}}{{C(I,X)}} be given. Suppose {{M| | + | Let {{M|p_1,p_2,p_1',p_2'\in}}{{C(I,X)}} be given. Suppose {{M|H_1:\ p_1\simeq p_1'\ (\text{rel }\{0,1\})}} and {{M|H_2:\ p_2\simeq p_2'\ (\text{rel }\{0,1\})}} are {{plural|end point preserving homotop|y|ies}} (where {{M|H_1,H_2:[0,1]\times [0,1]\rightarrow X}} are the specific {{plural|homotop|y|ies}} of the {{link|path|topology|s}}) then{{rITTMJML}}: |
− | * {{M|H:p_1*p_2\simeq p_1'*p_2'\ (\text{rel }\{0,1\})}} where {{M|1=H:=H_1*H_2}} - the [[homotopy concatenation]], explicitly: | + | * {{M|H:p_1*p_2\simeq p_1'*p_2'\ (\text{rel }\{0,1\})}} where |
− | ** {{M|1=H:[0,1]\times[0,1]\rightarrow X}} by {{M|1=H:(s,t)\mapsto\left\{\begin{array}{lr}H_1(s,2t)&\text{for }t\in[0,\frac{1}{2}]\\ H_2(s,2t-1)&\text{for }t\in[\frac{1}{2},1]\end{array}\right.}} | + | ** {{M|p_1*p_2}} denotes {{link|path concatenation|topology}}, explicitly: |
− | *** Note that the fact {{M|1=t=\frac{1}{2} }} is in both parts is a nod towards the use of the [[pasting lemma]] | + | *** {{M|1=p_1*p_2:[0,1]\rightarrow X}} by {{M|p_1*p_2:t\mapsto\left\{\begin{array}{lr}p_1(2t)&\text{for }t\in[0,\frac{1}{2}]\\p_2(2t-1)&\text{for }t\in[\frac{1}{2},1]\end{array}\right. }} |
+ | **** Note that the fact {{M|1=t=\frac{1}{2} }} is in both parts is a nod towards the use of the [[pasting lemma]] | ||
+ | ** {{M|1=H:=H_1*H_2}} - the [[homotopy concatenation]], explicitly: | ||
+ | *** {{M|1=H:[0,1]\times[0,1]\rightarrow X}} by {{M|1=H:(s,t)\mapsto\left\{\begin{array}{lr}H_1(s,2t)&\text{for }t\in[0,\frac{1}{2}]\\ H_2(s,2t-1)&\text{for }t\in[\frac{1}{2},1]\end{array}\right.}} | ||
+ | **** Note that the fact {{M|1=t=\frac{1}{2} }} is in both parts is a nod towards the use of the [[pasting lemma]] | ||
<div style="clear:both;"><div> | <div style="clear:both;"><div> | ||
==Proof== | ==Proof== |
Latest revision as of 19:11, 9 November 2016
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Really not in the mood for this, done it anyway, check first and flesh out
Contents
Statement
Let [ilmath]p_1,p_2,p_1',p_2'\in[/ilmath][ilmath]C([0,1],X)[/ilmath] be given. Suppose [ilmath]H_1:\ p_1\simeq p_1'\ (\text{rel }\{0,1\})[/ilmath] and [ilmath]H_2:\ p_2\simeq p_2'\ (\text{rel }\{0,1\})[/ilmath] are end point preserving homotopies (where [ilmath]H_1,H_2:[0,1]\times [0,1]\rightarrow X[/ilmath] are the specific homotopies of the paths) then[1]:
- [ilmath]H:p_1*p_2\simeq p_1'*p_2'\ (\text{rel }\{0,1\})[/ilmath] where
- [ilmath]p_1*p_2[/ilmath] denotes path concatenation, explicitly:
- [ilmath]p_1*p_2:[0,1]\rightarrow X[/ilmath] by [ilmath]p_1*p_2:t\mapsto\left\{\begin{array}{lr}p_1(2t)&\text{for }t\in[0,\frac{1}{2}]\\p_2(2t-1)&\text{for }t\in[\frac{1}{2},1]\end{array}\right. [/ilmath]
- Note that the fact [ilmath]t=\frac{1}{2}[/ilmath] is in both parts is a nod towards the use of the pasting lemma
- [ilmath]p_1*p_2:[0,1]\rightarrow X[/ilmath] by [ilmath]p_1*p_2:t\mapsto\left\{\begin{array}{lr}p_1(2t)&\text{for }t\in[0,\frac{1}{2}]\\p_2(2t-1)&\text{for }t\in[\frac{1}{2},1]\end{array}\right. [/ilmath]
- [ilmath]H:=H_1*H_2[/ilmath] - the homotopy concatenation, explicitly:
- [ilmath]H:[0,1]\times[0,1]\rightarrow X[/ilmath] by [ilmath]H:(s,t)\mapsto\left\{\begin{array}{lr}H_1(s,2t)&\text{for }t\in[0,\frac{1}{2}]\\ H_2(s,2t-1)&\text{for }t\in[\frac{1}{2},1]\end{array}\right.[/ilmath]
- Note that the fact [ilmath]t=\frac{1}{2}[/ilmath] is in both parts is a nod towards the use of the pasting lemma
- [ilmath]H:[0,1]\times[0,1]\rightarrow X[/ilmath] by [ilmath]H:(s,t)\mapsto\left\{\begin{array}{lr}H_1(s,2t)&\text{for }t\in[0,\frac{1}{2}]\\ H_2(s,2t-1)&\text{for }t\in[\frac{1}{2},1]\end{array}\right.[/ilmath]
- [ilmath]p_1*p_2[/ilmath] denotes path concatenation, explicitly:
Proof
Grade: A*
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
The message provided is:
It's basically already done. All we have to show is that the homotopy concatenation, [ilmath]H[/ilmath], fits the requirements
See also
References
Categories:
- Stub pages
- XXX Todo
- Pages requiring proofs
- Theorems
- Theorems, lemmas and corollaries
- Topology Theorems
- Topology Theorems, lemmas and corollaries
- Topology
- Algebraic Topology Theorems
- Algebraic Topology Theorems, lemmas and corollaries
- Algebraic Topology
- Homotopy Theory Theorems
- Homotopy Theory Theorems, lemmas and corollaries
- Homotopy Theory