Difference between revisions of "Characteristic property of the tensor product/Statement"
From Maths
(Created page with "<noinclude> : '''Notice: ''' this page is supposed to be transcluded, use {{C|1=full=true}} to show claims and extra things __TOC__ ==Statement== </noinclude><div style="float...") |
m (Typo and category) |
||
Line 19: | Line 19: | ||
** there exists a unique [[linear map]], {{M|\overline{A}:V_1\otimes\cdots\otimes V_k\rightarrow X}} such that: | ** there exists a unique [[linear map]], {{M|\overline{A}:V_1\otimes\cdots\otimes V_k\rightarrow X}} such that: | ||
*** {{M|\overline{A}\circ p\eq A}} (that is: the diagram on the right [[commutative diagram|commutes]]) | *** {{M|\overline{A}\circ p\eq A}} (that is: the diagram on the right [[commutative diagram|commutes]]) | ||
− | Where {{M|p:V_1\times\cdots\times V_k\rightarrow V_1\otimes\cdots\otimes V_k}} by {{M|p:(v_1,\ldots,v_k)\mapsto v_1\otimes\cdots\otimes v_k}} (and is {{m|p}} is [[multilinear map|multilinear]]) {{#if:{{{full|}}}|(see '''claim 1''' for the proof of this|}} | + | Where {{M|p:V_1\times\cdots\times V_k\rightarrow V_1\otimes\cdots\otimes V_k}} by {{M|p:(v_1,\ldots,v_k)\mapsto v_1\otimes\cdots\otimes v_k}} (and is {{m|p}} is [[multilinear map|multilinear]]) {{#if:{{{full|}}}|(see '''claim 1''' for the proof of this)|}} |
<div style="clear:both;"></div><noinclude> | <div style="clear:both;"></div><noinclude> | ||
==References== | ==References== | ||
<references/> | <references/> | ||
+ | {{Theorem Of|Linear Algebra|Abstract Algebra}} | ||
</noinclude> | </noinclude> |
Revision as of 20:10, 3 December 2016
- Notice: this page is supposed to be transcluded, use full=true to show claims and extra things
Contents
[hide]Statement
Let F be a field and let ((Vi,F))ki=1 be a family of finite dimensional vector spaces over F. Let (W,F) be another vector space over F. Then[1]:- If A:V1×⋯×Vk→W be any multilinear map
- there exists a unique linear map, ¯A:V1⊗⋯⊗Vk→X such that:
- ¯A∘p=A (that is: the diagram on the right commutes)
- there exists a unique linear map, ¯A:V1⊗⋯⊗Vk→X such that:
Where p:V1×⋯×Vk→V1⊗⋯⊗Vk by p:(v1,…,vk)↦v1⊗⋯⊗vk (and is p is multilinear)
References