Difference between revisions of "Index of notation"
m |
m |
||
Line 31: | Line 31: | ||
* Real Analysis | * Real Analysis | ||
| It is a norm on <math>C([a,b],\mathbb{R})</math>, given by <math>\|f\|_\infty=\sup_{x\in[a,b]}(|f(x)|)</math> | | It is a norm on <math>C([a,b],\mathbb{R})</math>, given by <math>\|f\|_\infty=\sup_{x\in[a,b]}(|f(x)|)</math> | ||
+ | |- | ||
+ | | <math>C^\infty</math> | ||
+ | | | ||
+ | * Differential Geometry | ||
+ | * Manifolds | ||
+ | | That a function has continuous (partial) derivatives of all orders, it is a generalisation of <math>C^k</math> functions | ||
+ | |- | ||
+ | | <math>C^k</math> ''[at {{M|p}}]'' | ||
+ | | | ||
+ | * Differential Geometry | ||
+ | * Manifolds | ||
+ | | A function is said to be <math>C^k</math> [at {{M|p}}] if all (partial) derivatives of all orders exist and are continuous [at {{M|p}}] | ||
|- | |- | ||
| <math>C^k([a,b],\mathbb{R})</math> | | <math>C^k([a,b],\mathbb{R})</math> | ||
Line 38: | Line 50: | ||
| It is the set of all functions <math>:[a,b]\rightarrow\mathbb{R}</math> that are [[Continuous map|continuous]] and have continuous derivatives up to (and including) order <math>k</math><br/> | | It is the set of all functions <math>:[a,b]\rightarrow\mathbb{R}</math> that are [[Continuous map|continuous]] and have continuous derivatives up to (and including) order <math>k</math><br/> | ||
The unit interval will be assumed when missing | The unit interval will be assumed when missing | ||
+ | |- | ||
+ | | <math>\mathcal{D}_a(\mathbb{R}^n)</math> | ||
+ | | | ||
+ | * Differential Geometry | ||
+ | * Manifolds | ||
+ | | Denotes [[Set of all derivations at a point]] - sometimes denoted {{M|T_a(\mathbb{R}^n)}} (and such authors will denote the tangent space as {{M|\mathbb{R}^n_a}}) | ||
|- | |- | ||
| <math>\bigudot_i A_i</math> | | <math>\bigudot_i A_i</math> | ||
Line 58: | Line 76: | ||
* Measure Theory | * Measure Theory | ||
| Same as <math>\mathcal{L}^p</math> | | Same as <math>\mathcal{L}^p</math> | ||
+ | |- | ||
+ | | <math>T_p(\mathbb{R}^n)</math> | ||
+ | | | ||
+ | * Differential Geometry | ||
+ | * Manifolds | ||
+ | | The [[Tangent space|tangent space]] at a point {{M|a}}<br /> | ||
+ | Sometimes denoted {{M|\mathbb{R}^n_a}} - '''Note:''' sometimes can mean [[Set of all derivations at a point]] which is often denoted {{M|\mathcal{D}_a(\mathbb{R}^n)}} | ||
|} | |} | ||
Revision as of 00:13, 5 April 2015
[math]\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }[/math][math]\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}[/math][math]\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }[/math]Ordered symbols are notations which are (likely) to appear as they are given here, for example [math]C([a,b],\mathbb{R})[/math] denotes the continuous function on the interval [ilmath][a,b][/ilmath] that map to [ilmath]\mathbb{R} [/ilmath] - this is unlikely to be given any other way because "C" is for continuous.
Ordered symbols
These are ordered by symbols, and then by LaTeX names secondly, for example [math]A[/math] comes before [math]\mathbb{A}[/math] comes before [math]\mathcal{A}[/math]
Expression | Context | Details |
---|---|---|
[math]\|\cdot\|[/math] |
|
Denotes the Norm of a vector |
[math]\|f\|_{C^k}[/math] |
|
This Norm is defined by [math]\|f\|_{C^k}=\sum^k_{i=0}\sup_{t\in[0,1]}(|f^{(i)}(t)|)[/math] - note [math]f^{(i)}[/math] is the [math]i^\text{th}[/math] derivative. |
[math]\|f\|_{L^p}[/math] |
|
[math]\|f\|_{L^p}=\left(\int^1_0|f(t)|^pdt\right)^\frac{1}{p}[/math] - it is a Norm on [math]\mathcal{C}([0,1],\mathbb{R})[/math] |
[math]\|f\|_\infty[/math] |
|
It is a norm on [math]C([a,b],\mathbb{R})[/math], given by [math]\|f\|_\infty=\sup_{x\in[a,b]}(|f(x)|)[/math] |
[math]C^\infty[/math] |
|
That a function has continuous (partial) derivatives of all orders, it is a generalisation of [math]C^k[/math] functions |
[math]C^k[/math] [at [ilmath]p[/ilmath]] |
|
A function is said to be [math]C^k[/math] [at [ilmath]p[/ilmath]] if all (partial) derivatives of all orders exist and are continuous [at [ilmath]p[/ilmath]] |
[math]C^k([a,b],\mathbb{R})[/math] |
|
It is the set of all functions [math]:[a,b]\rightarrow\mathbb{R}[/math] that are continuous and have continuous derivatives up to (and including) order [math]k[/math] The unit interval will be assumed when missing |
[math]\mathcal{D}_a(\mathbb{R}^n)[/math] |
|
Denotes Set of all derivations at a point - sometimes denoted [ilmath]T_a(\mathbb{R}^n)[/ilmath] (and such authors will denote the tangent space as [ilmath]\mathbb{R}^n_a[/ilmath]) |
[math]\bigudot_i A_i[/math] | Makes it explicit that the items in the union (the [math]A_i[/math]) are pairwise disjoint, that is for any two their intersection is empty | |
[math]\ell^p(\mathbb{F})[/math] |
|
The set of all bounded sequences, that is [math]\ell^p(\mathbb{F})=\{(x_1,x_2,...)|x_i\in\mathbb{F},\ \sum^\infty_{i=1}|x_i|^p<\infty\}[/math] |
[math]\mathcal{L}^p[/math] |
|
[math]\mathcal{L}^p(\mu)=\{u:X\rightarrow\mathbb{R}|u\in\mathcal{M},\ \int|u|^pd\mu<\infty\},\ p\in[1,\infty)\subset\mathbb{R}[/math] [math](X,\mathcal{A},\mu)[/math] is a measure space. The class of all measurable functions for which [math]|f|^p[/math] is integrable |
[math]L^p[/math] |
|
Same as [math]\mathcal{L}^p[/math] |
[math]T_p(\mathbb{R}^n)[/math] |
|
The tangent space at a point [ilmath]a[/ilmath] Sometimes denoted [ilmath]\mathbb{R}^n_a[/ilmath] - Note: sometimes can mean Set of all derivations at a point which is often denoted [ilmath]\mathcal{D}_a(\mathbb{R}^n)[/ilmath] |
Unordered symbols
Expression | Context | Details |
---|---|---|
[math]\mathcal{A}/\mathcal{B}[/math]-measurable |
|
There exists a Measurable map between the [ilmath]\sigma[/ilmath]-algebras |
[ilmath]a\cdot b[/ilmath] |
|
Vector dot product |