Difference between revisions of "Uniform probability distribution"

From Maths
Jump to: navigation, search
(Saving work)
 
m (Work required, adding navbox and categorising)
 
Line 14: Line 14:
 
-->\frac{1}{(b-a)+1} & \text{for }c\in\{a,\ldots,b\}\subseteq\mathbb{N}_{\ge 0} \\<!--
 
-->\frac{1}{(b-a)+1} & \text{for }c\in\{a,\ldots,b\}\subseteq\mathbb{N}_{\ge 0} \\<!--
 
-->0 & \text{otherwise}\end{array}\right.}}
 
-->0 & \text{otherwise}\end{array}\right.}}
 +
==References==
 +
<references/>
 +
{{Fundamental probability distributions navbox|open}}
 +
{{Definition|Statistics|Probability|Elementary Probability}}
 +
{{Probability Distribution|fund=yes}}

Latest revision as of 05:41, 15 January 2018

Definition

There are a few distinct cases we may define the uniform distribution on, however in any case the concept is clear:

The total probability, [ilmath]1[/ilmath], is spread evenly, or uniformly over the entire sample space, here denoted [ilmath]S[/ilmath], of a probability space here denoted [ilmath](S,\Omega,\mathbb{P})[/ilmath]

Discrete subset of [ilmath]\mathbb{N}_{\ge 0} [/ilmath]

We will cover the common cases, and their notation, first:

  • for [ilmath]a,b\in\mathbb{N}_{\ge 0} [/ilmath] we have: [ilmath]X\sim\text{Uni}(a,b)[/ilmath] to mean:

Snippets

  • for [ilmath]c\in\mathbb{R} [/ilmath] we define: [math]\mathbb{P}[X\eq c]:\eq\left\{\begin{array}{lr}\frac{1}{(b-a)+1} & \text{for }c\in\{a,\ldots,b\}\subseteq\mathbb{N}_{\ge 0} \\0 & \text{otherwise}\end{array}\right.[/math]

References