Pre-image [ilmath]\sigma[/ilmath]-algebra
Pre-image [ilmath]\sigma[/ilmath]-algebra | |
[math]\{f^{-1}(A')\ \vert\ A'\in\mathcal{A}'\}[/math] is a [ilmath]\sigma[/ilmath]-algebra on [ilmath]X[/ilmath] given a [ilmath]\sigma[/ilmath]-algebra [ilmath](X',\mathcal{A}')[/ilmath] and a map [ilmath]f:X\rightarrow X'[/ilmath]. |
Definition
Let [ilmath]\mathcal{A}'[/ilmath] be a [ilmath]\sigma[/ilmath]-algebra on [ilmath]X'[/ilmath] and let [ilmath]f:X\rightarrow X'[/ilmath] be a map. The pre-image [ilmath]\sigma[/ilmath]-algebra on [ilmath]X[/ilmath][1] is the [ilmath]\sigma[/ilmath]-algebra, [ilmath]\mathcal{A} [/ilmath] (on [ilmath]X[/ilmath]) given by:
- [math]\mathcal{A}:=\left\{f^{-1}(A')\ \vert\ A'\in\mathcal{A}'\right\}[/math]
We can write this (for brevity) alternatively as:
- [math]\mathcal{A}:=f^{-1}(\mathcal{A}')[/math] (using abuses of the implies-subset relation)
Claim: [ilmath](X,\mathcal{A})[/ilmath] is indeed a [ilmath]\sigma[/ilmath]-algebra
Proof of claims
Claim 1: [ilmath](X,\mathcal{A})[/ilmath] is indeed a [ilmath]\sigma[/ilmath]-algebra
The message provided is:
See also
References
|
OLD PAGE
Let [ilmath]f:X\rightarrow X'[/ilmath] and let [ilmath]\mathcal{A}'[/ilmath] be a [ilmath]\sigma[/ilmath]-algebra on [ilmath]X'[/ilmath], we can define a sigma algebra on [ilmath]X[/ilmath], called [ilmath]\mathcal{A} [/ilmath], by:
- [ilmath]\mathcal{A}:=f^{-1}(\mathcal{A}'):=\left\{f^{-1}(A')\vert\ A'\in\mathcal{A}'\right\}[/ilmath]
TODO: Measures Integrals and Martingales - page 16