Exercises:Mond - Topology - 1/Question 7
From Maths
Section B
Question 7
Let [ilmath]D^2[/ilmath] denote the closed unit disk in [ilmath]\mathbb{R}^2[/ilmath] and define an equivalence relation on [ilmath]D^2[/ilmath] by setting [ilmath]x_1\sim x_2[/ilmath] if [ilmath]\Vert x_1\Vert=\Vert x_2\Vert[/ilmath]. Show that [ilmath]\frac{D^2}{\sim} [/ilmath] is homeomorphic to [ilmath]\mathbb{S}^2[/ilmath] - the sphere.
- Hint: first define a surjection [ilmath](:D^2\rightarrow\mathbb{S}^2)[/ilmath] mapping all of [ilmath]\partial D^2[/ilmath] to the north pole. This may be defined using a good picture or a formula.
Solution
Comments:
- Suppose we take the hind and find a surjection, [ilmath]f:D^2\rightarrow\mathbb{S}^2[/ilmath], what would we do next? Passing to the quotient again! Then, as already mentioned, invoke the compact-to-Hausdorff theorem to yield a homeomorphism
Notes
References