Covariant functor
From Maths
Revision as of 15:01, 2 February 2016 by Alec (Talk | contribs) (Created page with "{{Todo|Flesh this page out}} ==Definition== {{:Covariant functor/Definition}} ==References== <references/> {{Definition|Category Theory}}")
TODO: Flesh this page out
Definition
A covariant functor, [ilmath]T:C\leadsto D[/ilmath] (for categories [ilmath]C[/ilmath] and [ilmath]D[/ilmath]) is a pair of mappings[1]:
- [ilmath]T:\left\{\begin{array}{rcl}\text{Obj}(C) & \longrightarrow & \text{Obj}(D)\\ X & \longmapsto & TX \end{array}\right.[/ilmath]
- [ilmath]T:\left\{\begin{array}{rcl}\text{Mor}(C) & \longrightarrow & \text{Mor}(D)\\ f & \longmapsto & Tf \end{array}\right.[/ilmath]
Which preserve composition of morphisms and the identity morphism of each object, that is to say:
- [ilmath]\forall f,g\in\text{Mor}(C)[Tfg=T(f\circ g)=Tf\circ Tg=TfTg][/ilmath] (I've added the [ilmath]\circ[/ilmath]s in to make it more obvious to the reader what is going on)
- Where such composition makes sense. That is [ilmath]\text{target}(g)=\text{source}(f)[/ilmath].
- and [ilmath]\forall A\in\text{Obj}(C)[T1_A=1_{TA}][/ilmath]
Thus if [ilmath]f:X\rightarrow Y[/ilmath] and [ilmath]g:Y\rightarrow Z[/ilmath] are morphisms of [ilmath]C[/ilmath], then the following diagram commutes:
[ilmath]\begin{xy}\xymatrix{TX \ar[rr]^{Tgf} \ar[dr]_{Tf} & & TZ \\ & TY \ar[ur]_{Tg} & }\end{xy}[/ilmath]
Thus the diagram just depicts the requirement that:
|
[ilmath]\ [/ilmath] | Note that the diagram is basically just the "image" of [ilmath]\begin{xy}\xymatrix{X \ar[rr]^{gf} \ar[dr]_{f} & & Z \\ & Y \ar[ur]_{g} & }\end{xy}[/ilmath]
|
---|