Module
From Maths
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Important for the Rings and Modules. Demote when fleshed out
Contents
Definition
Let [ilmath](R,+,*,0)[/ilmath][Note 1] be a ring - not necessarily with unity - then a "left [ilmath]R[/ilmath]-module"[1] is:
- An Abelian group, [ilmath](M,\oplus)[/ilmath] together with a
- left action, [ilmath][:R\times M\rightarrow M][/ilmath] given by [ilmath][:(r,x)\mapsto rx][/ilmath] of [ilmath]R[/ilmath] on [ilmath]MM[/ilmath], called the "left [ilmath]R[/ilmath]-module structure" on [ilmath]M[/ilmath]
such that:
- [ilmath]\forall r,s\in R,\forall x\in M[r(sx)=(rs)x][/ilmath],
- [ilmath]\forall r,s\in R,\forall x\in M[(r+s)x=rx+sx][/ilmath] and
- [ilmath]\forall r\in R,\forall x,y\in M[r(x+y)=rx+ry][/ilmath]
Additionally, if [ilmath]R[/ilmath] is a u-ring[Note 2] then a left [ilmath]R[/ilmath]-module is unital when[1]:
- [ilmath]\forall x\in M[1_Rx=x][/ilmath]
The notation [ilmath]{}_RM[/ilmath] generally indicates that [ilmath]M[/ilmath] is a left [ilmath]R[/ilmath]-module
See next
- Direct product of modules - an instance of a product
- External direct sum of modules - an instance of a co-product
- Homomorphism
Notes
- ↑ Or [ilmath](R,+,*,0,1)[/ilmath] if the ring has unity. Standard notation
- ↑ has unity, a multiplicative identity denoted [ilmath]1[/ilmath] or [ilmath]1_R[/ilmath]