Invariant of an equivalence relation
From Maths
Revision as of 18:47, 9 November 2016 by Alec (Talk | contribs) (Created page with "{{Stub page|grade=A|msg=Find more references and flesh out}} ==Definition== Let {{M|S}} be a set and let {{M|\sim\subseteq S\times S}} be an equivalence relation on {{...")
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Find more references and flesh out
Contents
Definition
Let [ilmath]S[/ilmath] be a set and let [ilmath]\sim\subseteq S\times S[/ilmath] be an equivalence relation on [ilmath]S[/ilmath], let [ilmath]W[/ilmath][Note 1] be any set and let [ilmath]f:S\rightarrow W[/ilmath] be any function from [ilmath]S[/ilmath] to [ilmath]W[/ilmath]. Then[1]:
- We say "[ilmath]f[/ilmath] is an invariant of [ilmath]\sim[/ilmath]" if[Note 2]:
- [ilmath]\forall a,b\in S[a\sim b\implies f(a)=f(b)][/ilmath] - in other words, [ilmath]f[/ilmath] is constant on the equivalence classes of [ilmath]\sim[/ilmath].
Complete invariant
With the setup of [ilmath]S[/ilmath], [ilmath]W[/ilmath], [ilmath]\sim[/ilmath] and [ilmath]f:S\rightarrow W[/ilmath] as above define a "complete invariant" as follows[1]:
- "[ilmath]f[/ilmath] is a complete invariant of [ilmath]\sim[/ilmath]" if[Note 2]:
- [ilmath]\forall a,b\in S[a\sim b\iff f(a)=f(b)][/ilmath] - in other words, [ilmath]f[/ilmath] is constant on and distinct on the equivalence classes of [ilmath]\sim[/ilmath].
Terminology
It's hard to be formal in English, however we may say any of the following:
- "[ilmath]f[/ilmath] is an invariant of [ilmath]\sim[/ilmath]"[1]
- "[ilmath]\sim[/ilmath] is invariant under [ilmath]f[/ilmath]"
- This makes sense as we're saying the [ilmath]a\sim b[/ilmath] property holds (doesn't vary) "under" (think "image of [ilmath]A[/ilmath] under [ilmath]f[/ilmath]"-like terminology) [ilmath]f[/ilmath], that [ilmath]f(a)=f(b)[/ilmath]
Examples and instances
TODO: Create a category and start collecting
See also
- Complete system of invariants - a finite set of complete invariants really.
- Set of canonical forms - a subset of [ilmath]S[/ilmath], [ilmath]C\in\mathcal{P}(S)[/ilmath], such that there exists a unique [ilmath]c\in C[/ilmath] such that [ilmath]c\sim s[/ilmath]
- An equivalent condition to the axiom of choice is that every partition has a set of representatives that's closely related. Be warned
Notes
- ↑ Think of [ilmath]W[/ilmath] as [ilmath]W\text{hatever} [/ilmath] - as usual (except in Linear Algebra where [ilmath]W[/ilmath] is quite often used for vector spaces
- ↑ 2.0 2.1 See "definitions and iff"
References
Grade: A
This page requires references, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable, it just means that the author of the page doesn't have a book to hand, or remember the book to find it, which would have been a suitable reference.
The message provided is:
The message provided is:
More on the fundamentals of mathematics would be good