Homeomorphism

From Maths
Revision as of 13:27, 9 July 2015 by Alec (Talk | contribs)

Jump to: navigation, search

Not to be confused with Homomorphism

Homeomorphism of metric spaces

Given two metric spaces [ilmath](X,d)[/ilmath] and [ilmath](Y,d')[/ilmath] they are said to be homeomorphic[1] if:

Then [ilmath](X,d)[/ilmath] and [ilmath](Y,d')[/ilmath] are homeomorphic and we may write [ilmath](X,d)\cong(Y,d')[/ilmath] or simply (as Mathematicians are lazy) [ilmath]X\cong Y[/ilmath] if the metrics are obvious


TODO: Find reference for use of [ilmath]\cong[/ilmath] notation



Topological Homeomorphism

A topological homeomorphism is bijective map between two topological spaces [math]f:(X,\mathcal{J})\rightarrow(Y,\mathcal{K})[/math] where:

  1. [math]f[/math] is bijective
  2. [math]f[/math] is continuous
  3. [math]f^{-1}[/math] is continuous



TODO: Using Continuity definitions are equivalent it is easily seen that the metric space definition implies the second, that logic and a reference would be good!



See also

References

  1. Functional Analysis - George Bachman Lawrence Narici