Discrete metric and topology/Metric space definition

From Maths
< Discrete metric and topology
Revision as of 06:08, 27 November 2015 by Alec (Talk | contribs) (Added ref)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Let [ilmath]X[/ilmath] be a set. The discrete[1] metric, or trivial metric[2] is the metric defined as follows:

  • [math]d:X\times X\rightarrow \mathbb{R}_{\ge 0} [/math] with [math]d:(x,y)\mapsto\left\{\begin{array}{lr}0 & \text{if }x=y \\1 & \text{otherwise}\end{array}\right.[/math]

However any strictly positive value will do for the [ilmath]x\ne y[/ilmath] case. For example we could define [ilmath]d[/ilmath] as:

  • [math]d:(x,y)\mapsto\left\{\begin{array}{lr}0 & \text{if }x=y \\v & \text{otherwise}\end{array}\right.[/math]
    • Where [ilmath]v[/ilmath] is some arbitrary member of [ilmath]\mathbb{R}_{> 0} [/ilmath][Note 1] - traditionally (as mentioned) [ilmath]v=1[/ilmath] is used.

Note: however in proofs we shall always use the case [ilmath]v=1[/ilmath] for simplicity

Notes

  1. Note the strictly greater than 0 requirement for [ilmath]v[/ilmath]

References

  1. Introduction to Topology - Theodore W. Gamelin & Robert Everist Greene
  2. Functional Analysis - George Bachman and Lawrence Narici