Lingering sequence
From Maths
Revision as of 16:48, 6 December 2015 by Alec (Talk | contribs) (Created page with "Given a metric space {{M|(X,d)}} a ''lingering sequence'' or sometimes ''hovering'' sequence is a sequence {{M|1=(x_n)_{n=1}^\infty\subseteq X}} that satisfies the fol...")
Given a metric space [ilmath](X,d)[/ilmath] a lingering sequence or sometimes hovering sequence is a sequence [ilmath](x_n)_{n=1}^\infty\subseteq X[/ilmath] that satisfies the following property[1]:
- [ilmath]\exists x\in X\forall\epsilon>0[\vert B_\epsilon(x)\cap (x_n)_{n=1}^\infty\vert=\aleph_0][/ilmath]
Or in words:
- This
Theorems
Let [ilmath](X,d)[/ilmath] be a metric space, then[2]:
- [math]\forall(x_n)_{n=1}^\infty\subseteq X\left[\left(\exists x\in X\ \forall\epsilon>0[\vert B_\epsilon(x)\cap(x_n)_{n=1}^\infty\vert=\aleph_0]\right)\implies\left(\exists(k_n)_{n=1}^\infty\subseteq\mathbb{N}\left[(\forall n\in\mathbb{N}[k_n<k_{n+1}])\implies\left(\exists x'\in X\left[\lim_{n\rightarrow\infty}(x_{k_n})=x'\right]\right)\right]\right)\right][/math]
This is just a verbose way of expressing the statement that:
- Given a sequence [ilmath](x_n)_{n=1}^\infty\subseteq X[/ilmath] if it is a lingering sequence then it has a subsequence that converges
In a metric space [ilmath](X,d)[/ilmath] that is compact every sequence is a lingering sequence, that is to say[2]:
- [math]\forall(x_n)_{n=1}^\infty\subseteq X\ :\ \exists x\in X\ \forall\epsilon>0[\vert B_\epsilon(x)\cap(x_n)_{n=1}^\infty\vert=\aleph_0][/math]
Notes
References
- ↑ Alec's own work
- ↑ 2.0 2.1 Introduction to Topology - Theodore W. Gamelin & Robert Everist Greene