Limit
From Maths
Definition
A limit allows us to sidestep the notion of infinity and to allow us to potentially extend the domain of functions
Class | Name | Form | Meaning |
---|---|---|---|
Limit of a sequence | converging to [ilmath]a[/ilmath] | [math]\lim_{n\rightarrow\infty}(a_n)=a[/math] |
|
Tending towards [ilmath]+\infty[/ilmath] | [math]\lim_{n\rightarrow\infty}(a_n)=+\infty[/math] |
| |
Tending towards [ilmath]-\infty[/ilmath] | [math]\lim_{n\rightarrow\infty}(a_n)=-\infty[/math] |
| |
Diverging to [ilmath]\infty[/ilmath] | [math]\lim_{n\rightarrow\infty}(a_n)=\infty[/math] |
| |
Limit of a function at [ilmath]x_0[/ilmath] | converging to [ilmath]\ell[/ilmath] | [math]\lim_{x\rightarrow x_0}(f(x))=\ell[/math] | [math]\forall \epsilon>0\exists\delta>0\forall x\in X\left[0<d(x,x_0)<\delta\implies d'(f(x),\ell)<\epsilon\right][/math] |
TODO: I like the idea of a summary page, but it needs to link to the right pages and have definitions in place
(See Infinity)