Dynkin system/Definition 1
From Maths
\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }Given a set X and a family of subsets of X, which we shall denote \mathcal{D}\subseteq\mathcal{P}(X) is a Dynkin system[1] if:
- X\in\mathcal{D}
- For any D\in\mathcal{D} we have D^c\in\mathcal{D}
- For any (D_n)_{n=1}^\infty\subseteq\mathcal{D} is a sequence of pairwise disjoint sets we have \udot_{n=1}^\infty D_n\in\mathcal{D}