Field

From Maths
Revision as of 21:29, 19 April 2016 by Alec (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Most of this page is very old, or was created as a stub, and needs to be brought up to date with the rest of the site, especially such a core AA definition

Definition

A field[1] is a ring, [ilmath]F[/ilmath], that is both commutative and has unity with more than one element is a field if:

  • Every non-zero element of [ilmath]F[/ilmath] has a multiplicative inverse in [ilmath]F[/ilmath]

Every field is also an Integral domain[1]

Proof of claims




TODO: Page 96 in[1]


See also

References

  1. 1.0 1.1 1.2 Fundamentals of Abstract Algebra - Neal H. McCoy