Passing to the quotient (topology)

From Maths
Revision as of 13:36, 27 April 2016 by Alec (Talk | contribs)

Jump to: navigation, search
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.
Grade: A
This page requires references, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable, it just means that the author of the page doesn't have a book to hand, or remember the book to find it, which would have been a suitable reference.

Statement

[ilmath]\xymatrix{ X \ar[d]_\pi \ar[dr]^f & \\ \frac{X}{\sim} \ar@{.>}[r]^{\overline{f} }& Y}[/ilmath]
[ilmath]f[/ilmath] descends to the quotient

Suppose that [ilmath](X,\mathcal{ J })[/ilmath] is a topological space and [ilmath]\sim[/ilmath] is an equivalence relation, let [ilmath](\frac{X}{\sim},\mathcal{ Q })[/ilmath] be the resulting quotient topology and [ilmath]\pi:X\rightarrow\frac{X}{\sim} [/ilmath] the resulting quotient map, then:

  • Let [ilmath](Y,\mathcal{ K })[/ilmath] be any topological space and let [ilmath]f:X\rightarrow Y[/ilmath] be a continuous map that is constant on the fibres of [ilmath]\pi[/ilmath][Note 1] then:
  • there exists a unique continuous map, [ilmath]\bar{f}:\frac{X}{\sim}\rightarrow Y[/ilmath] such that [ilmath]f=\overline{f}\circ\pi[/ilmath]

We may then say [ilmath]f[/ilmath] descends to the quotient or passes to the quotient

Note: this is an instance of passing-to-the-quotient for functions

Proof

Notes

  1. That means that:

References