Notes:The set of all mu*-measurable sets is a ring
Overview
In Measure Theory Halmos does something weird for section 11, theorem B. I have yet to "crack" what he's doing, and this is the point of this page.
Halmos' theorem:
Section 11 - Theorem B - page 46:
- If [ilmath]\mu^*:\mathcal{H}\rightarrow\bar{\mathbb{R} }_{\ge0} [/ilmath] is an outer-measure on a hereditary sigma-ring, [ilmath]\mathcal{H} [/ilmath] and if [ilmath]\mathcal{S} [/ilmath] is the set of all [ilmath]\mu^*[/ilmath]-measurable sets then [ilmath]\mathcal{S} [/ilmath] is a sigma-ring.
- Furthermore, if [ilmath]A\in\mathcal{H} [/ilmath] and if [ilmath] ({ E_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{S} [/ilmath] is a sequence of pair-wise disjoint sets, and [ilmath]E:=\bigcup_{n=1}^\infty E_n[/ilmath] then:
- [math]\mu^*(A\cap E)=\sum^\infty_{n=1}\mu^*(A\cap E_n)[/math]
Context:
- The previous theorem proved was that [ilmath]\mathcal{S} [/ilmath] is a ring of sets.
- I have proved that [ilmath]\mu^*\Big\vert_\mathcal{S} [/ilmath] - the restriction (function) of [ilmath]\mu^*[/ilmath] to [ilmath]\mathcal{S} [/ilmath] - is a pre-measure.
His proof
Step | Comment |
---|---|
Notice we have:
[ilmath]\mu^*(A\cap(E_1\cup E_2))=\mu^*(A\cap E_1)+\mu^*(A\cap E_2)[/ilmath] |
As [ilmath]A\cap(E_1\cup E_2)\subseteq A\cap E_1[/ilmath] and [ilmath]A\cap(E_2\cup E_2)\subseteq A\cap E_2[/ilmath] we see:
(This requires that they are disjoint for the subtraction side to be true) We could just as well have used [ilmath]E_2[/ilmath] to split. |
It follows by induction that:
For every [ilmath]n\in\mathbb{N}_{\ge 0} [/ilmath] |
Agreed |
Define:
|
|
"Then it follows from theorem A" that:
|
First note that:
Next note that [ilmath]A-F_n\supseteq A-F_m[/ilmath] for [ilmath]m\ge n[/ilmath], so:
Thus:
|
"Since it is true for every [ilmath]n[/ilmath] we obtain":
|
Witchcraft |
Details
I am completely happy with:
- [ilmath]\mu^*(A\cap\bigcup_{i=1}^nA_i)=\sum^n_{i=1}\mu^*(A\cap E_i)[/ilmath]
- [ilmath]\mu^*(A-E)\le\mu^*(A-\bigcup^n_{i=1}A_i)[/ilmath]
- [ilmath]\mu^*(A)=\mu^*(A\cap F_n)+\mu^*(A-F_n)[/ilmath] (this is okay because [ilmath]\mathcal{S} [/ilmath] is a ring, thus the finite union, [ilmath]F_n\in\mathcal{S} [/ilmath].)
- This is: [ilmath]\mu^*(A)=\mu^*(A\cap\bigcup_{i=1}^nE_i)+\mu^*(A-\bigcup_{i=1}^nE_i)[/ilmath] by definition of [ilmath]F_n[/ilmath].
Combining these we see:
- [ilmath]\begin{array}{rcl}\mu^*(A)&=&\mu^*(A\cap F_n)+\mu^*(A-F_n)\\&\ge&\mu^*(A\cap F_n)+\mu^*(A-E)\\&=&\sum^n_{i=1}\mu^*(A\cap E_i)+\mu^*(A-E)\end{array}[/ilmath]
I've also consulted Measures Integrals and Martingales, it has the same thing in it. Both books say (and require):
- [math]\sum^\infty_{n=1}\mu^*(A\cap E_n)\ge\mu^*(A\cap E)[/math]
I could believe [ilmath]\forall m\in\mathbb{N}\left[\sum^m_{i=1}\mu^*(A\cap E_n)\le\mu^*(A\cap E)\right][/ilmath] (by monotonicity of the outer-measure) but I cannot justify this.
I am also nervous about: [ilmath]\forall m\in\mathbb{N}\left[\mu^*(A)\ge\sum^m_{i=1}\mu^*(A\cap E_i)+\mu^*(A-E)\right]\implies\mu^*(A)\ge\sum^\infty_{n=1}\mu^*(A\cap E_n)+\mu^*(A-E)[/ilmath] however:
- The sequence [ilmath] ({ \text{(no content) } })_{ n = 1 }^{ \infty } [/ilmath] is monotonically increasing, and it is bounded above (if [ilmath]\mu^*(A)[/ilmath] is finite), thus is finite, and there's a similar case to be made in the infinite case. I don't know how to jump from the finite to the infinite case.