Partial-function

From Maths
Revision as of 22:26, 23 August 2016 by Alec (Talk | contribs) (Adding function navbox)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Stub grade: D
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Flesh out, find some references, link to relations. This page was created mainly to make note of the partial version of a (total) function, so then a partial ordering is to a total ordering as a partial function is to a function
Grade: D
This page requires references, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable, it just means that the author of the page doesn't have a book to hand, or remember the book to find it, which would have been a suitable reference.
The message provided is:
One of the reasons this page lacks info is because I can't find a source for any of it!

Definition

Suppose [ilmath]f:A\rightarrow B[/ilmath] is a partial function, considering [ilmath]f[/ilmath] as a relation this means that, for some [ilmath]a\in A[/ilmath], we have either:

  1. [ilmath]f[/ilmath] maps [ilmath]a[/ilmath]: [Note 1] [ilmath]f(a)[/ilmath] is "defined" and there exists a [ilmath]b\in B[/ilmath] such that [ilmath](a,b)\in f[/ilmath], which we usually write: [ilmath]f(a)=b[/ilmath] ([ilmath]f[/ilmath] relates [ilmath]a[/ilmath] to only [ilmath]b[/ilmath]) or
  2. [ilmath]f[/ilmath] doesn't map [ilmath]a[/ilmath]: [ilmath]f(a)[/ilmath] is "undefined" and there does not exist any [ilmath]b\in B[/ilmath] such that [ilmath](a,b)\in f[/ilmath]

Formulation

Suppose that [ilmath]f:A\rightarrow B[/ilmath] is a partial function, define [ilmath]\bar{A} [/ilmath] as follows:

  • [ilmath]\bar{A}:=f^{-1}(B):=\{a\in A\ \vert\ \exists b\in B[f(a)=b]\}[/ilmath] (here [ilmath]f^{-1}(B)[/ilmath] denotes the pre-image of [ilmath]B[/ilmath], which is the set containing all [ilmath]a\in A[/ilmath] such that [ilmath]f[/ilmath] relates [ilmath]a[/ilmath] to a [ilmath]b\in B[/ilmath])

Now we get an "induced map":

  • [ilmath]\bar{f}:\bar{A}\rightarrow B[/ilmath] that is a (total) function, defined by: [ilmath]\bar{f}:\bar{a}\mapsto f(\bar{a})[/ilmath] and we know [ilmath]f(\bar{a})[/ilmath] is defined as [ilmath]\bar{A} [/ilmath] only contains the elements of [ilmath]A[/ilmath] for which [ilmath]f[/ilmath] is defined.

We of course get a canonical inclusion map, [ilmath]i_{\bar{A} }:\bar{A}\rightarrow A[/ilmath] given by [ilmath]i_{\bar{A} }:\bar{a}\mapsto\bar{a} [/ilmath]. Thus we can formulate a partial function like this:

[ilmath]\xymatrix{ A \ar@{~>}[rr]^f & & B \\ \bar{A} \ar[urr]_{\bar{f} } \ar@{^{(}->}[u]^{i_{\bar{A} } } }[/ilmath] where the wiggly line is the partial function.

Notes

  1. This is my own term. With total orderings any two elements of underlying set of the relation must be comparable. With a total function, [ilmath]g[/ilmath], [ilmath]g[/ilmath] must map every element of its domain to a value. A partial function, doesn't map everything, just as a partial order isn't always comparable

References