Dense

From Maths
Revision as of 09:39, 28 September 2016 by Alec (Talk | contribs) (Created page with "{{Stub page|grade=B|msg=Revise page, add some links to propositions or theorems using the dense property. Also more references, then demote}} ==Definition== Let {{Top.|X|J}} b...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Stub grade: B
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Revise page, add some links to propositions or theorems using the dense property. Also more references, then demote

Definition

Let (X,J) be a topological space and let AP(X) be an arbitrary subset of X. We say "A is dense in X if[1]:

  • ¯A=X - that is to say that the closure of A is the entirety of X itself.

See also

References

  1. Jump up Introduction to Topological Manifolds - John M. Lee