Take -1 to any point on the circle (we pick the south pole in this diagram), then go around the circle clockwise at a constant speed such that by [ilmath]f(1)[/ilmath] one has done a full revolution and is back at the starting point.
The right-hand-side is intended to demonstrate that the interval [ilmath](-1,1)[/ilmath] to the circle without the south-pole is bijective, ie it is injective and surjective, so the diagram on the left is "almost injective" in that it is injective everywhere except that it maps [ilmath]-1[/ilmath] and [ilmath]1[/ilmath] both to the south pole. As required