Notes:Concrete tensor product
From Maths
Notes
Let (V1,F) and (V2,F) both be vector spaces over the field F. Let V∗i:=L(Vi,F) - the dual vector space. We wish to show that:
- V1⊗V2≅L(V1,V2;F), with some intermediate steps.
Concrete tensor "operation"
This is where I am struggling - I need to make this formal.
- Define ⊗V1,V2:V∗1×V∗2→L(V1,V2;F) by ⊗V1,V2:(α,β)↦((:V1×V2→F)(:(u,v)↦α(u)β(v)))where α(u)⋅β(v) is just the multiplication operation of the field F
Is this a surjection?
- Let f∈L(V1,V2;F) be given.
- We claim: ∃(α,β)∈V∗1×V∗2[α⊗V1,V2β=f] - really I cannot see how to pick (α,β) and go from there. So we must construct it....
- If f=g for some functions of the form (:X→Y) then ∀x∈X[f(x)=g(x)] - we must do this.
- Let (u,v)∈V1×V2 be given - we need to show (α⊗β)(u,v)=f(u,v) (using ⊗ as short for ⊗V1,V2)
- Note that u=n1∑c1=1uc1e(1)c1and v=n2∑c2=1vc2e(2)c2for ni:=Dim(Vi)
- Then f(u,v)=f(n1∑c1=1uc1e(1)c1,n2∑c2=1vc2e(2)c2)
- =n1∑c1=1uc1f(e(1)c1,n2∑c2=1vc2e(2)c2)
- =n1∑c1=1uc1n2∑c2=1vc2f(e(1)c1,e(2)c2)
- =n1∑c1=1n2∑c2=1uc1vc2f(e(1)c1,e(2)c2)
- =n1∑c1=1uc1f(e(1)c1,n2∑c2=1vc2e(2)c2)
- and (α⊗β)(u,v)=α(u)β(v)
- =α(n1∑c1=1uc1e(1)c1)β(n2∑c2=1vc2e(2)c2)
- =(n1∑c1=1uc1α(e(1)c1))β(n2∑c2=1vc2e(2)c2)
- =n1∑c1=1uc1α(e(1)c1)β(n2∑c2=1vc2e(2)c2)
- =n1∑c1=1uc1α(e(1)c1)(n2∑c2=1vc2β(e(2)c2))
- =n1∑c1=1n2∑c2=1uc1vc2α(e(1)c1)β(e(2)c2)
- =α(n1∑c1=1uc1e(1)c1)β(n2∑c2=1vc2e(2)c2)
- Observe: n1∑c1=1n2∑c2=1uc1vc2f(e(1)c1,e(2)c2)=n1∑c1=1n2∑c2=1uc1vc2α(e(1)c1)β(e(2)c2)is what we require
- Note that u=n1∑c1=1uc1e(1)c1
- We claim: ∃(α,β)∈V∗1×V∗2[α⊗V1,V2β=f] - really I cannot see how to pick (α,β) and go from there. So we must construct it....