Equivalent conditions to a set being bounded
From Maths
Revision as of 23:12, 18 March 2017 by Alec (Talk | contribs) (Demoted stub grade, added note to link with metrically bounded set)
Stub grade: D
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Created to document, textbook stub
Grade: A*
This page requires some work to be carried out
Some aspect of this page is incomplete and work is required to finish it
The message provided is:
The message provided is:
Cleanup required. New Metrically bounded set page could link to this in another form. Make sure the two are compatible Alec (talk) 23:12, 18 March 2017 (UTC)
Contents
Statement
Let [ilmath](X,d)[/ilmath] be a metric space and let [ilmath]A\in\mathcal{P}(X)[/ilmath] be an arbitrary subset of [ilmath]X[/ilmath]. Then the following are all logical equivalent to each other[Note 1]:
- [ilmath]\exists C<\infty\ \forall a,b\in A[d(a,b)<C][/ilmath] - [ilmath]A[/ilmath] is bounded (the definition)
- [ilmath]\forall x\in X\exists C<\infty\forall a\in A[d(a,x)<C][/ilmath][1]
Proof of claims
[ilmath]1\implies 2)[/ilmath] [ilmath]\big(\exists C<\infty\ \forall a,b\in A[d(a,b)<C]\big)\implies\big(\forall x\in X\exists C<\infty\forall a\in A[d(a,x)<C]\big)[/ilmath], that boundedness implies condition 2
Grade: C
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
This proof has been marked as an page requiring an easy proof
The message provided is:
Easy and routine proof. If stuck see page 13 in Functional Analysis, Dzung Minh Ha
This proof has been marked as an page requiring an easy proof
[ilmath]2\implies 1)[/ilmath] [ilmath]\big(\forall x\in X\exists C<\infty\forall a\in A[d(a,x)<C]\big)\implies \big(\exists C<\infty\ \forall a,b\in A[d(a,b)<C]\big)[/ilmath], that condition 2 implies boundedness
Grade: C
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
This proof has been marked as an page requiring an easy proof
The message provided is:
Easy and routine proof. If stuck see page 13 in Functional Analysis, Dzung Minh Ha
This proof has been marked as an page requiring an easy proof
Notes
- ↑ Just in case the reader isn't sure what this means, if [ilmath]A[/ilmath] and [ilmath]B[/ilmath] are logically equivalent then:
- [ilmath]A\iff B[/ilmath]. In words "[ilmath]A[/ilmath] if and only if [ilmath]B[/ilmath]"
References
Categories:
- Stub pages
- Pages requiring work
- Pages requiring proofs: Easy proofs
- Pages requiring proofs
- Theorems
- Theorems, lemmas and corollaries
- Analysis Theorems
- Analysis Theorems, lemmas and corollaries
- Analysis
- Functional Analysis Theorems
- Functional Analysis Theorems, lemmas and corollaries
- Functional Analysis
- Topology Theorems
- Topology Theorems, lemmas and corollaries
- Topology
- Metric Space Theorems
- Metric Space Theorems, lemmas and corollaries
- Metric Space