Limit point

From Maths
Revision as of 00:35, 13 February 2015 by Alec (Talk | contribs)

Jump to: navigation, search


Definition

Common form

For a Topological space [math](X,\mathcal{J})[/math], [math]x\in X[/math] is a limit point of [math]A[/math] if every neighborhood of [math]x[/math] has a non-empty intersection with [math]A[/math] that contains some point other than [math]x[/math] itself.

Equivalent form

[math]x[/math] is a limit point of [math]A[/math] if [math]x\in\text{Closure}(A-\{x\})[/math] (you can read about closure here)


TODO: Prove these are the same


Other names

  • Accumilation point

Examples

[math]0[/math] is a limit point of [math](0,1)[/math]

Proof using first definition

Is is clear we are talking about the Euclidian metric

Proof using second definition